diff --git a/theories/base_logic/lib/own.v b/theories/base_logic/lib/own.v index d3475828577f3c2f2050415a2a2530f8b380be35..d538e20561a654e2d71ef0aba72625183850fee4 100644 --- a/theories/base_logic/lib/own.v +++ b/theories/base_logic/lib/own.v @@ -58,6 +58,8 @@ Definition own {Σ A i} := own_aux.(unseal) Σ A i. Definition own_eq : @own = @own_def := own_aux.(seal_eq). Instance: Params (@own) 4 := {}. Typeclasses Opaque own. +Notation "👻{ γ } x" := (own γ x) + (at level 20, x at next level, format "👻{ γ } x"). (** * Properties about ghost ownership *) Section global. @@ -80,15 +82,15 @@ Proof. rewrite !own_eq. solve_proper. Qed. Global Instance own_proper γ : Proper ((≡) ==> (⊣⊢)) (@own Σ A _ γ) := ne_proper _. -Lemma own_op γ a1 a2 : own γ (a1 ⋅ a2) ⊣⊢ own γ a1 ∗ own γ a2. +Lemma own_op γ a1 a2 : 👻{γ} (a1 ⋅ a2) ⊣⊢ 👻{γ} a1 ∗ 👻{γ} a2. Proof. by rewrite !own_eq /own_def -ownM_op iRes_singleton_op. Qed. -Lemma own_mono γ a1 a2 : a2 ≼ a1 → own γ a1 ⊢ own γ a2. +Lemma own_mono γ a1 a2 : a2 ≼ a1 → 👻{γ} a1 ⊢ 👻{γ} a2. Proof. move=> [c ->]. by rewrite own_op sep_elim_l. Qed. Global Instance own_mono' γ : Proper (flip (≼) ==> (⊢)) (@own Σ A _ γ). Proof. intros a1 a2. apply own_mono. Qed. -Lemma own_valid γ a : own γ a ⊢ ✓ a. +Lemma own_valid γ a : 👻{γ} a ⊢ ✓ a. Proof. rewrite !own_eq /own_def ownM_valid /iRes_singleton. rewrite ofe_fun_validI (forall_elim (inG_id _)) ofe_fun_lookup_singleton. @@ -96,21 +98,21 @@ Proof. (* implicit arguments differ a bit *) by trans (✓ cmra_transport inG_prf a : iProp Σ)%I; last destruct inG_prf. Qed. -Lemma own_valid_2 γ a1 a2 : own γ a1 -∗ own γ a2 -∗ ✓ (a1 ⋅ a2). +Lemma own_valid_2 γ a1 a2 : 👻{γ} a1 -∗ 👻{γ} a2 -∗ ✓ (a1 ⋅ a2). Proof. apply wand_intro_r. by rewrite -own_op own_valid. Qed. -Lemma own_valid_3 γ a1 a2 a3 : own γ a1 -∗ own γ a2 -∗ own γ a3 -∗ ✓ (a1 ⋅ a2 ⋅ a3). +Lemma own_valid_3 γ a1 a2 a3 : 👻{γ} a1 -∗ 👻{γ} a2 -∗ 👻{γ} a3 -∗ ✓ (a1 ⋅ a2 ⋅ a3). Proof. do 2 apply wand_intro_r. by rewrite -!own_op own_valid. Qed. -Lemma own_valid_r γ a : own γ a ⊢ own γ a ∗ ✓ a. +Lemma own_valid_r γ a : 👻{γ} a ⊢ 👻{γ} a ∗ ✓ a. Proof. apply: bi.persistent_entails_r. apply own_valid. Qed. -Lemma own_valid_l γ a : own γ a ⊢ ✓ a ∗ own γ a. +Lemma own_valid_l γ a : 👻{γ} a ⊢ ✓ a ∗ 👻{γ} a. Proof. by rewrite comm -own_valid_r. Qed. -Global Instance own_timeless γ a : Discrete a → Timeless (own γ a). +Global Instance own_timeless γ a : Discrete a → Timeless (👻{γ} a). Proof. rewrite !own_eq /own_def; apply _. Qed. -Global Instance own_core_persistent γ a : CoreId a → Persistent (own γ a). +Global Instance own_core_persistent γ a : CoreId a → Persistent (👻{γ} a). Proof. rewrite !own_eq /own_def; apply _. Qed. -Lemma later_own γ a : ▷ own γ a -∗ ◇ (∃ b, own γ b ∧ ▷ (a ≡ b)). +Lemma later_own γ a : ▷ 👻{γ} a -∗ ◇ (∃ b, 👻{γ} b ∧ ▷ (a ≡ b)). Proof. rewrite own_eq /own_def later_ownM. apply exist_elim=> r. assert (NonExpansive (λ r : iResUR Σ, r (inG_id Hin) !! γ)). @@ -145,7 +147,7 @@ Qed. assertion. However, the map_updateP_alloc does not suffice to show this. *) Lemma own_alloc_strong a (P : gname → Prop) : pred_infinite P → - ✓ a → (|==> ∃ γ, ⌜P γ⌠∧ own γ a)%I. + ✓ a → (|==> ∃ γ, ⌜P γ⌠∧ 👻{γ} a)%I. Proof. intros HP Ha. rewrite -(bupd_mono (∃ m, ⌜∃ γ, P γ ∧ m = iRes_singleton γ a⌠∧ uPred_ownM m)%I). @@ -157,7 +159,7 @@ Proof. by rewrite !own_eq /own_def -(exist_intro γ) pure_True // left_id. Qed. Lemma own_alloc_cofinite a (G : gset gname) : - ✓ a → (|==> ∃ γ, ⌜γ ∉ G⌠∧ own γ a)%I. + ✓ a → (|==> ∃ γ, ⌜γ ∉ G⌠∧ 👻{γ} a)%I. Proof. intros Ha. apply (own_alloc_strong a (λ γ, γ ∉ G))=> //. @@ -165,14 +167,14 @@ Proof. intros E. set (i := fresh (G ∪ E)). exists i. apply not_elem_of_union, is_fresh. Qed. -Lemma own_alloc a : ✓ a → (|==> ∃ γ, own γ a)%I. +Lemma own_alloc a : ✓ a → (|==> ∃ γ, 👻{γ} a)%I. Proof. intros Ha. rewrite /uPred_valid /bi_emp_valid (own_alloc_cofinite a ∅) //; []. apply bupd_mono, exist_mono=>?. eauto using and_elim_r. Qed. (** ** Frame preserving updates *) -Lemma own_updateP P γ a : a ~~>: P → own γ a ==∗ ∃ a', ⌜P a'⌠∧ own γ a'. +Lemma own_updateP P γ a : a ~~>: P → 👻{γ} a ==∗ ∃ a', ⌜P a'⌠∧ 👻{γ} a'. Proof. intros Ha. rewrite !own_eq. rewrite -(bupd_mono (∃ m, ⌜∃ a', m = iRes_singleton γ a' ∧ P a'⌠∧ uPred_ownM m)%I). @@ -183,16 +185,16 @@ Proof. rewrite -(exist_intro a'). by apply and_intro; [apply pure_intro|]. Qed. -Lemma own_update γ a a' : a ~~> a' → own γ a ==∗ own γ a'. +Lemma own_update γ a a' : a ~~> a' → 👻{γ} a ==∗ 👻{γ} a'. Proof. intros; rewrite (own_updateP (a' =)); last by apply cmra_update_updateP. by apply bupd_mono, exist_elim=> a''; apply pure_elim_l=> ->. Qed. Lemma own_update_2 γ a1 a2 a' : - a1 ⋅ a2 ~~> a' → own γ a1 -∗ own γ a2 ==∗ own γ a'. + a1 ⋅ a2 ~~> a' → 👻{γ} a1 -∗ 👻{γ} a2 ==∗ 👻{γ} a'. Proof. intros. apply wand_intro_r. rewrite -own_op. by apply own_update. Qed. Lemma own_update_3 γ a1 a2 a3 a' : - a1 ⋅ a2 ⋅ a3 ~~> a' → own γ a1 -∗ own γ a2 -∗ own γ a3 ==∗ own γ a'. + a1 ⋅ a2 ⋅ a3 ~~> a' → 👻{γ} a1 -∗ 👻{γ} a2 -∗ 👻{γ} a3 ==∗ 👻{γ} a'. Proof. intros. do 2 apply wand_intro_r. rewrite -!own_op. by apply own_update. Qed. End global. @@ -206,7 +208,7 @@ Arguments own_update {_ _} [_] _ _ _ _. Arguments own_update_2 {_ _} [_] _ _ _ _ _. Arguments own_update_3 {_ _} [_] _ _ _ _ _ _. -Lemma own_unit A `{!inG Σ (A:ucmraT)} γ : (|==> own γ ε)%I. +Lemma own_unit A `{!inG Σ (A:ucmraT)} γ : (|==> 👻{γ} ε)%I. Proof. rewrite /uPred_valid /bi_emp_valid (ownM_unit emp) !own_eq /own_def. apply bupd_ownM_update, ofe_fun_singleton_update_empty. @@ -217,7 +219,7 @@ Qed. (** Big op class instances *) Instance own_cmra_sep_homomorphism `{!inG Σ (A:ucmraT)} : - WeakMonoidHomomorphism op uPred_sep (≡) (own γ). + WeakMonoidHomomorphism op uPred_sep (≡) (👻{γ}). Proof. split; try apply _. apply own_op. Qed. (** Proofmode class instances *) @@ -225,19 +227,19 @@ Section proofmode_classes. Context `{!inG Σ A}. Implicit Types a b : A. - Global Instance into_sep_own γ a b1 b2 : - IsOp a b1 b2 → IntoSep (own γ a) (own γ b1) (own γ b2). + Global Instance into_sep_👻{γ} a b1 b2 : + IsOp a b1 b2 → IntoSep (👻{γ} a) (👻{γ} b1) (👻{γ} b2). Proof. intros. by rewrite /IntoSep (is_op a) own_op. Qed. Global Instance into_and_own p γ a b1 b2 : - IsOp a b1 b2 → IntoAnd p (own γ a) (own γ b1) (own γ b2). + IsOp a b1 b2 → IntoAnd p (👻{γ} a) (👻{γ} b1) (👻{γ} b2). Proof. intros. by rewrite /IntoAnd (is_op a) own_op sep_and. Qed. - Global Instance from_sep_own γ a b1 b2 : - IsOp a b1 b2 → FromSep (own γ a) (own γ b1) (own γ b2). + Global Instance from_sep_👻{γ} a b1 b2 : + IsOp a b1 b2 → FromSep (👻{γ} a) (👻{γ} b1) (👻{γ} b2). Proof. intros. by rewrite /FromSep -own_op -is_op. Qed. Global Instance from_and_own_persistent γ a b1 b2 : IsOp a b1 b2 → TCOr (CoreId b1) (CoreId b2) → - FromAnd (own γ a) (own γ b1) (own γ b2). + FromAnd (👻{γ} a) (👻{γ} b1) (👻{γ} b2). Proof. intros ? Hb. rewrite /FromAnd (is_op a) own_op. destruct Hb; by rewrite persistent_and_sep.