From iris.heap_lang Require Export spawn. From iris.heap_lang Require Import proofmode notation. Import uPred. Definition parN : namespace := nroot .@ "par". Definition par : val := λ: "fs", let: "handle" := spawn (Fst "fs") in let: "v2" := Snd "fs" #() in let: "v1" := join "handle" in ("v1", "v2"). Notation "e1 ||| e2" := (par (Pair (λ: <>, e1) (λ: <>, e2)))%E : expr_scope. Section proof. Context `{!heapG Σ, !spawnG Σ}. (* Notice that this allows us to strip a later *after* the two Ψ have been brought together. That is strictly stronger than first stripping a later and then merging them, as demonstrated by [tests/joining_existentials.v]. This is why these are not Texan triples. *) Lemma par_spec (Ψ1 Ψ2 : val → iProp Σ) e (f1 f2 : val) (Φ : val → iProp Σ) : to_val e = Some (f1,f2)%V → (WP f1 #() {{ Ψ1 }} ∗ WP f2 #() {{ Ψ2 }} ∗ ▷ ∀ v1 v2, Ψ1 v1 ∗ Ψ2 v2 -∗ ▷ Φ (v1,v2)%V) ⊢ WP par e {{ Φ }}. Proof. iIntros (?) "(Hf1 & Hf2 & HΦ)". rewrite /par. wp_value. wp_let. wp_proj. wp_apply (spawn_spec parN with "Hf1"); try wp_done; try solve_ndisj. iIntros (l) "Hl". wp_let. wp_proj. wp_bind (f2 _). iApply (wp_wand with "Hf2"); iIntros (v) "H2". wp_let. wp_apply (join_spec with "[$Hl]"). iIntros (w) "H1". iSpecialize ("HΦ" with "* [-]"); first by iSplitL "H1". by wp_let. Qed. Lemma wp_par (Ψ1 Ψ2 : val → iProp Σ) (e1 e2 : expr) `{!Closed [] e1, Closed [] e2} (Φ : val → iProp Σ) : (WP e1 {{ Ψ1 }} ∗ WP e2 {{ Ψ2 }} ∗ ∀ v1 v2, Ψ1 v1 ∗ Ψ2 v2 -∗ ▷ Φ (v1,v2)%V) ⊢ WP e1 ||| e2 {{ Φ }}. Proof. iIntros "(H1 & H2 & H)". iApply (par_spec Ψ1 Ψ2 with "[- $H]"); try wp_done. iSplitL "H1"; by wp_let. Qed. End proof.