From iris.base_logic.lib Require Export invariants. From iris.algebra Require Export auth. From iris.algebra Require Import gmap. From iris.base_logic Require Import big_op. From iris.proofmode Require Import tactics. Set Default Proof Using "Type". Import uPred. (* The CMRA we need. *) Class authG Σ (A : ucmraT) := AuthG { auth_inG :> inG Σ (authR A); auth_discrete :> CMRADiscrete A; }. Definition authΣ (A : ucmraT) : gFunctors := #[ GFunctor (authR A) ]. Instance subG_authΣ Σ A : subG (authΣ A) Σ → CMRADiscrete A → authG Σ A. Proof. solve_inG. Qed. Section definitions. Context `{invG Σ, authG Σ A} {T : Type} (γ : gname). Definition auth_own (a : A) : iProp Σ := own γ (◯ a). Definition auth_inv (f : T → A) (φ : T → iProp Σ) : iProp Σ := (∃ t, own γ (● f t) ∗ φ t)%I. Definition auth_ctx (N : namespace) (f : T → A) (φ : T → iProp Σ) : iProp Σ := inv N (auth_inv f φ). Global Instance auth_own_ne : NonExpansive auth_own. Proof. solve_proper. Qed. Global Instance auth_own_proper : Proper ((≡) ==> (⊣⊢)) auth_own. Proof. solve_proper. Qed. Global Instance auth_own_timeless a : TimelessP (auth_own a). Proof. apply _. Qed. Global Instance auth_own_persistent a : Persistent a → PersistentP (auth_own a). Proof. apply _. Qed. Global Instance auth_inv_ne n : Proper (pointwise_relation T (dist n) ==> pointwise_relation T (dist n) ==> dist n) auth_inv. Proof. solve_proper. Qed. Global Instance auth_inv_proper : Proper (pointwise_relation T (≡) ==> pointwise_relation T (⊣⊢) ==> (⊣⊢)) auth_inv. Proof. solve_proper. Qed. Global Instance auth_ctx_ne N n : Proper (pointwise_relation T (dist n) ==> pointwise_relation T (dist n) ==> dist n) (auth_ctx N). Proof. solve_proper. Qed. Global Instance auth_ctx_proper N : Proper (pointwise_relation T (≡) ==> pointwise_relation T (⊣⊢) ==> (⊣⊢)) (auth_ctx N). Proof. solve_proper. Qed. Global Instance auth_ctx_persistent N f φ : PersistentP (auth_ctx N f φ). Proof. apply _. Qed. End definitions. Typeclasses Opaque auth_own auth_inv auth_ctx. Instance: Params (@auth_own) 4. Instance: Params (@auth_inv) 5. Instance: Params (@auth_ctx) 7. Section auth. Context `{invG Σ, authG Σ A}. Context {T : Type} `{!Inhabited T}. Context (f : T → A) (φ : T → iProp Σ). Implicit Types N : namespace. Implicit Types P Q R : iProp Σ. Implicit Types a b : A. Implicit Types t u : T. Implicit Types γ : gname. Lemma auth_own_op γ a b : auth_own γ (a ⋅ b) ⊣⊢ auth_own γ a ∗ auth_own γ b. Proof. by rewrite /auth_own -own_op auth_frag_op. Qed. Global Instance from_and_auth_own γ a b1 b2 : FromOp a b1 b2 → FromAnd false (auth_own γ a) (auth_own γ b1) (auth_own γ b2) | 90. Proof. rewrite /FromOp /FromAnd=> <-. by rewrite auth_own_op. Qed. Global Instance from_and_auth_own_persistent γ a b1 b2 : FromOp a b1 b2 → Or (Persistent b1) (Persistent b2) → FromAnd true (auth_own γ a) (auth_own γ b1) (auth_own γ b2) | 91. Proof. intros ? Hper; apply mk_from_and_persistent; [destruct Hper; apply _|]. by rewrite -auth_own_op from_op. Qed. Global Instance into_and_auth_own p γ a b1 b2 : IntoOp a b1 b2 → IntoAnd p (auth_own γ a) (auth_own γ b1) (auth_own γ b2) | 90. Proof. intros. apply mk_into_and_sep. by rewrite (into_op a) auth_own_op. Qed. Lemma auth_own_mono γ a b : a ≼ b → auth_own γ b ⊢ auth_own γ a. Proof. intros [? ->]. by rewrite auth_own_op sep_elim_l. Qed. Lemma auth_own_valid γ a : auth_own γ a ⊢ ✓ a. Proof. by rewrite /auth_own own_valid auth_validI. Qed. Global Instance auth_own_sep_homomorphism γ : WeakMonoidHomomorphism op uPred_sep (auth_own γ). Proof. split. apply _. apply auth_own_op. Qed. Global Instance own_mono' γ : Proper (flip (≼) ==> (⊢)) (auth_own γ). Proof. intros a1 a2. apply auth_own_mono. Qed. Lemma auth_alloc_strong N E t (G : gset gname) : ✓ (f t) → ▷ φ t ={E}=∗ ∃ γ, ⌜γ ∉ G⌝ ∧ auth_ctx γ N f φ ∧ auth_own γ (f t). Proof. iIntros (?) "Hφ". rewrite /auth_own /auth_ctx. iMod (own_alloc_strong (Auth (Excl' (f t)) (f t)) G) as (γ) "[% Hγ]"; first done. iRevert "Hγ"; rewrite auth_both_op; iIntros "[Hγ Hγ']". iMod (inv_alloc N _ (auth_inv γ f φ) with "[-Hγ']") as "#?". { iNext. rewrite /auth_inv. iExists t. by iFrame. } eauto. Qed. Lemma auth_alloc N E t : ✓ (f t) → ▷ φ t ={E}=∗ ∃ γ, auth_ctx γ N f φ ∧ auth_own γ (f t). Proof. iIntros (?) "Hφ". iMod (auth_alloc_strong N E t ∅ with "Hφ") as (γ) "[_ ?]"; eauto. Qed. Lemma auth_empty γ : (|==> auth_own γ ∅)%I. Proof. by rewrite /auth_own -own_empty. Qed. Lemma auth_acc E γ a : ▷ auth_inv γ f φ ∗ auth_own γ a ={E}=∗ ∃ t, ⌜a ≼ f t⌝ ∗ ▷ φ t ∗ ∀ u b, ⌜(f t, a) ~l~> (f u, b)⌝ ∗ ▷ φ u ={E}=∗ ▷ auth_inv γ f φ ∗ auth_own γ b. Proof using Type*. iIntros "[Hinv Hγf]". rewrite /auth_inv /auth_own. iDestruct "Hinv" as (t) "[>Hγa Hφ]". iModIntro. iExists t. iDestruct (own_valid_2 with "Hγa Hγf") as % [? ?]%auth_valid_discrete_2. iSplit; first done. iFrame. iIntros (u b) "[% Hφ]". iMod (own_update_2 with "Hγa Hγf") as "[Hγa Hγf]". { eapply auth_update; eassumption. } iModIntro. iFrame. iExists u. iFrame. Qed. Lemma auth_open E N γ a : ↑N ⊆ E → auth_ctx γ N f φ ∗ auth_own γ a ={E,E∖↑N}=∗ ∃ t, ⌜a ≼ f t⌝ ∗ ▷ φ t ∗ ∀ u b, ⌜(f t, a) ~l~> (f u, b)⌝ ∗ ▷ φ u ={E∖↑N,E}=∗ auth_own γ b. Proof using Type*. iIntros (?) "[#? Hγf]". rewrite /auth_ctx. iInv N as "Hinv" "Hclose". (* The following is essentially a very trivial composition of the accessors [auth_acc] and [inv_open] -- but since we don't have any good support for that currently, this gets more tedious than it should, with us having to unpack and repack various proofs. TODO: Make this mostly automatic, by supporting "opening accessors around accessors". *) iMod (auth_acc with "[$Hinv $Hγf]") as (t) "(?&?&HclAuth)". iModIntro. iExists t. iFrame. iIntros (u b) "H". iMod ("HclAuth" $! u b with "H") as "(Hinv & ?)". by iMod ("Hclose" with "Hinv"). Qed. End auth. Arguments auth_open {_ _ _} [_] {_} [_] _ _ _ _ _ _ _.