(* Copyright (c) 2012-2015, Robbert Krebbers. *) (* This file is distributed under the terms of the BSD license. *) (** This file implements finite maps and finite sets with keys of any countable type. The implementation is based on [Pmap]s, radix-2 search trees. *) From iris.prelude Require Export countable fin_maps fin_map_dom. From iris.prelude Require Import pmap mapset set. (** * The data structure *) (** We pack a [Pmap] together with a proof that ensures that all keys correspond to codes of actual elements of the countable type. *) Definition gmap_wf `{Countable K} {A} : Pmap A → Prop := map_Forall (λ p _, encode <$> decode p = Some p). Record gmap K `{Countable K} A := GMap { gmap_car : Pmap A; gmap_prf : bool_decide (gmap_wf gmap_car) }. Arguments GMap {_ _ _ _} _ _. Arguments gmap_car {_ _ _ _} _. Lemma gmap_eq `{Countable K} {A} (m1 m2 : gmap K A) : m1 = m2 ↔ gmap_car m1 = gmap_car m2. Proof. split; [by intros ->|intros]. destruct m1, m2; simplify_eq/=. f_equal; apply proof_irrel. Qed. Instance gmap_eq_eq `{Countable K} `{∀ x y : A, Decision (x = y)} (m1 m2 : gmap K A) : Decision (m1 = m2). Proof. refine (cast_if (decide (gmap_car m1 = gmap_car m2))); abstract (by rewrite gmap_eq). Defined. (** * Operations on the data structure *) Instance gmap_lookup `{Countable K} {A} : Lookup K A (gmap K A) := λ i m, let (m,_) := m in m !! encode i. Instance gmap_empty `{Countable K} {A} : Empty (gmap K A) := GMap ∅ I. Lemma gmap_partial_alter_wf `{Countable K} {A} (f : option A → option A) m i : gmap_wf m → gmap_wf (partial_alter f (encode i) m). Proof. intros Hm p x. destruct (decide (encode i = p)) as [<-|?]. - rewrite decode_encode; eauto. - rewrite lookup_partial_alter_ne by done. by apply Hm. Qed. Instance gmap_partial_alter `{Countable K} {A} : PartialAlter K A (gmap K A) := λ f i m, let (m,Hm) := m in GMap (partial_alter f (encode i) m) (bool_decide_pack _ (gmap_partial_alter_wf f m i (bool_decide_unpack _ Hm))). Lemma gmap_fmap_wf `{Countable K} {A B} (f : A → B) m : gmap_wf m → gmap_wf (f <$> m). Proof. intros ? p x. rewrite lookup_fmap, fmap_Some; intros (?&?&?); eauto. Qed. Instance gmap_fmap `{Countable K} : FMap (gmap K) := λ A B f m, let (m,Hm) := m in GMap (f <$> m) (bool_decide_pack _ (gmap_fmap_wf f m (bool_decide_unpack _ Hm))). Lemma gmap_omap_wf `{Countable K} {A B} (f : A → option B) m : gmap_wf m → gmap_wf (omap f m). Proof. intros ? p x; rewrite lookup_omap, bind_Some; intros (?&?&?); eauto. Qed. Instance gmap_omap `{Countable K} : OMap (gmap K) := λ A B f m, let (m,Hm) := m in GMap (omap f m) (bool_decide_pack _ (gmap_omap_wf f m (bool_decide_unpack _ Hm))). Lemma gmap_merge_wf `{Countable K} {A B C} (f : option A → option B → option C) m1 m2 : let f' o1 o2 := match o1, o2 with None, None => None | _, _ => f o1 o2 end in gmap_wf m1 → gmap_wf m2 → gmap_wf (merge f' m1 m2). Proof. intros f' Hm1 Hm2 p z; rewrite lookup_merge by done; intros. destruct (m1 !! _) eqn:?, (m2 !! _) eqn:?; naive_solver. Qed. Instance gmap_merge `{Countable K} : Merge (gmap K) := λ A B C f m1 m2, let (m1,Hm1) := m1 in let (m2,Hm2) := m2 in let f' o1 o2 := match o1, o2 with None, None => None | _, _ => f o1 o2 end in GMap (merge f' m1 m2) (bool_decide_pack _ (gmap_merge_wf f _ _ (bool_decide_unpack _ Hm1) (bool_decide_unpack _ Hm2))). Instance gmap_to_list `{Countable K} {A} : FinMapToList K A (gmap K A) := λ m, let (m,_) := m in omap (λ ix : positive * A, let (i,x) := ix in (,x) <$> decode i) (map_to_list m). (** * Instantiation of the finite map interface *) Instance gmap_finmap `{Countable K} : FinMap K (gmap K). Proof. split. - unfold lookup; intros A [m1 Hm1] [m2 Hm2] Hm. apply gmap_eq, map_eq; intros i; simpl in *. apply bool_decide_unpack in Hm1; apply bool_decide_unpack in Hm2. apply option_eq; intros x; split; intros Hi. + pose proof (Hm1 i x Hi); simpl in *. by destruct (decode i); simplify_eq/=; rewrite <-Hm. + pose proof (Hm2 i x Hi); simpl in *. by destruct (decode i); simplify_eq/=; rewrite Hm. - done. - intros A f [m Hm] i; apply (lookup_partial_alter f m). - intros A f [m Hm] i j Hs; apply (lookup_partial_alter_ne f m). by contradict Hs; apply (inj encode). - intros A B f [m Hm] i; apply (lookup_fmap f m). - intros A [m Hm]; unfold map_to_list; simpl. apply bool_decide_unpack, map_Forall_to_list in Hm; revert Hm. induction (NoDup_map_to_list m) as [|[p x] l Hpx]; inversion 1 as [|??? Hm']; simplify_eq/=; [by constructor|]. destruct (decode p) as [i|] eqn:?; simplify_eq/=; constructor; eauto. rewrite elem_of_list_omap; intros ([p' x']&?&?); simplify_eq/=. feed pose proof (proj1 (Forall_forall _ _) Hm' (p',x')); simpl in *; auto. by destruct (decode p') as [i'|]; simplify_eq/=. - intros A [m Hm] i x; unfold map_to_list, lookup; simpl. apply bool_decide_unpack in Hm; rewrite elem_of_list_omap; split. + intros ([p' x']&Hp'&?); apply elem_of_map_to_list in Hp'. feed pose proof (Hm p' x'); simpl in *; auto. by destruct (decode p') as [i'|] eqn:?; simplify_eq/=. + intros; exists (encode i,x); simpl. by rewrite elem_of_map_to_list, decode_encode. - intros A B f [m Hm] i; apply (lookup_omap f m). - intros A B C f ? [m1 Hm1] [m2 Hm2] i; unfold merge, lookup; simpl. set (f' o1 o2 := match o1, o2 with None,None => None | _, _ => f o1 o2 end). by rewrite lookup_merge by done; destruct (m1 !! _), (m2 !! _). Qed. (** * Finite sets *) Notation gset K := (mapset (gmap K)). Instance gset_dom `{Countable K} {A} : Dom (gmap K A) (gset K) := mapset_dom. Instance gset_dom_spec `{Countable K} : FinMapDom K (gmap K) (gset K) := mapset_dom_spec. Definition of_gset `{Countable A} (X : gset A) : set A := mkSet (λ x, x ∈ X). Lemma elem_of_of_gset `{Countable A} (X : gset A) x : x ∈ of_gset X ↔ x ∈ X. Proof. done. Qed. Definition to_gmap `{Countable K} {A} (x : A) (X : gset K) : gmap K A := (λ _, x) <$> mapset_car X. Lemma lookup_to_gmap `{Countable K} {A} (x : A) (X : gset K) i : to_gmap x X !! i = guard (i ∈ X); Some x. Proof. destruct X as [X]; unfold to_gmap, elem_of, mapset_elem_of; simpl. rewrite lookup_fmap. case_option_guard; destruct (X !! i) as [[]|]; naive_solver. Qed. Lemma lookup_to_gmap_Some `{Countable K} {A} (x : A) (X : gset K) i y : to_gmap x X !! i = Some y ↔ i ∈ X ∧ x = y. Proof. rewrite lookup_to_gmap. simplify_option_eq; naive_solver. Qed. Lemma lookup_to_gmap_None `{Countable K} {A} (x : A) (X : gset K) i : to_gmap x X !! i = None ↔ i ∉ X. Proof. rewrite lookup_to_gmap. simplify_option_eq; naive_solver. Qed. Lemma to_gmap_empty `{Countable K} {A} (x : A) : to_gmap x ∅ = ∅. Proof. apply fmap_empty. Qed. Lemma to_gmap_union_singleton `{Countable K} {A} (x : A) i Y : to_gmap x ({[ i ]} ∪ Y) = <[i:=x]>(to_gmap x Y). Proof. apply map_eq; intros j; apply option_eq; intros y. rewrite lookup_insert_Some, !lookup_to_gmap_Some, elem_of_union, elem_of_singleton; destruct (decide (i = j)); intuition. Qed. (** * Fresh elements *) (* This is pretty ad-hoc and just for the case of [gset positive]. We need a notion of countable non-finite types to generalize this. *) Instance gset_positive_fresh : Fresh positive (gset positive) := λ X, let 'Mapset (GMap m _) := X in fresh (dom _ m). Instance gset_positive_fresh_spec : FreshSpec positive (gset positive). Proof. split. - apply _. - by intros X Y; rewrite <-elem_of_equiv_L; intros ->. - intros [[m Hm]]; unfold fresh; simpl. by intros ?; apply (is_fresh (dom Pset m)), elem_of_dom_2 with (). Qed.