From iris.program_logic Require Export weakestpre. From iris.proofmode Require Import tactics. Set Default Proof Using "Type". Section lifting. Context `{irisG Λ Σ}. Implicit Types s : stuckness. Implicit Types v : val Λ. Implicit Types e : expr Λ. Implicit Types σ : state Λ. Implicit Types P Q : iProp Σ. Implicit Types Φ : val Λ → iProp Σ. Lemma wp_lift_step s E Φ e1 : to_val e1 = None → (∀ σ1, state_interp σ1 ={E,∅}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌝ ∗ ▷ ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌝ ={∅,E}=∗ state_interp σ2 ∗ WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. rewrite wp_unfold /wp_pre=>->. iIntros "H" (σ1) "Hσ". iMod ("H" with "Hσ") as "(%&?)". iModIntro. iSplit. by destruct s. done. Qed. Lemma wp_lift_stuck E Φ e : to_val e = None → (∀ σ, state_interp σ ={E,∅}=∗ ⌜stuck e σ⌝) ⊢ WP e @ E ?{{ Φ }}. Proof. rewrite wp_unfold /wp_pre=>->. iIntros "H" (σ1) "Hσ". iMod ("H" with "Hσ") as %[? Hirr]. iModIntro. iSplit; first done. iIntros "!>" (e2 σ2 efs) "%". by case: (Hirr e2 σ2 efs). Qed. (** Derived lifting lemmas. *) Lemma wp_lift_pure_step `{Inhabited (state Λ)} s E E' Φ e1 : (∀ σ1, if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → (∀ σ1 e2 σ2 efs, prim_step e1 σ1 e2 σ2 efs → σ1 = σ2) → (|={E,E'}▷=> ∀ e2 efs σ, ⌜prim_step e1 σ e2 σ efs⌝ → WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (Hsafe Hstep) "H". iApply wp_lift_step. { specialize (Hsafe inhabitant). destruct s; last done. by eapply reducible_not_val. } iIntros (σ1) "Hσ". iMod "H". iMod fupd_intro_mask' as "Hclose"; last iModIntro; first by set_solver. iSplit. { iPureIntro. destruct s; done. } iNext. iIntros (e2 σ2 efs ?). destruct (Hstep σ1 e2 σ2 efs); auto; subst. iMod "Hclose" as "_". iFrame "Hσ". iMod "H". iApply "H"; auto. Qed. Lemma wp_lift_pure_stuck `{Inhabited (state Λ)} E Φ e : (∀ σ, stuck e σ) → True ⊢ WP e @ E ?{{ Φ }}. Proof. iIntros (Hstuck) "_". iApply wp_lift_stuck. - destruct(to_val e) as [v|] eqn:He; last done. rewrite -He. by case: (Hstuck inhabitant). - iIntros (σ) "_". iMod (fupd_intro_mask' E ∅) as "_". by set_solver. by auto. Qed. (* Atomic steps don't need any mask-changing business here, one can use the generic lemmas here. *) Lemma wp_lift_atomic_step {s E Φ} e1 : to_val e1 = None → (∀ σ1, state_interp σ1 ={E}=∗ ⌜if s is NotStuck then reducible e1 σ1 else True⌝ ∗ ▷ ∀ e2 σ2 efs, ⌜prim_step e1 σ1 e2 σ2 efs⌝ ={E}=∗ state_interp σ2 ∗ default False (to_val e2) Φ ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (?) "H". iApply (wp_lift_step s E _ e1)=>//; iIntros (σ1) "Hσ1". iMod ("H" $! σ1 with "Hσ1") as "[$ H]". iMod (fupd_intro_mask' E ∅) as "Hclose"; first set_solver. iModIntro; iNext; iIntros (e2 σ2 efs) "%". iMod "Hclose" as "_". iMod ("H" $! e2 σ2 efs with "[#]") as "($ & HΦ & $)"; first by eauto. destruct (to_val e2) eqn:?; last by iExFalso. by iApply wp_value. Qed. Lemma wp_lift_pure_det_step `{Inhabited (state Λ)} {s E E' Φ} e1 e2 efs : (∀ σ1, if s is NotStuck then reducible e1 σ1 else to_val e1 = None) → (∀ σ1 e2' σ2 efs', prim_step e1 σ1 e2' σ2 efs' → σ1 = σ2 ∧ e2 = e2' ∧ efs = efs')→ (|={E,E'}▷=> WP e2 @ s; E {{ Φ }} ∗ [∗ list] ef ∈ efs, WP ef @ s; ⊤ {{ _, True }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros (? Hpuredet) "H". iApply (wp_lift_pure_step s E E'); try done. { by intros; eapply Hpuredet. } iApply (step_fupd_wand with "H"); iIntros "H". by iIntros (e' efs' σ (_&->&->)%Hpuredet). Qed. Lemma wp_pure_step_fupd `{Inhabited (state Λ)} s E E' e1 e2 φ Φ : PureExec φ e1 e2 → φ → (|={E,E'}▷=> WP e2 @ s; E {{ Φ }}) ⊢ WP e1 @ s; E {{ Φ }}. Proof. iIntros ([??] Hφ) "HWP". iApply (wp_lift_pure_det_step with "[HWP]"). - intros σ. specialize (pure_exec_safe σ). destruct s; eauto using reducible_not_val. - destruct s; naive_solver. - by rewrite big_sepL_nil right_id. Qed. Lemma wp_pure_step_later `{Inhabited (state Λ)} s E e1 e2 φ Φ : PureExec φ e1 e2 → φ → ▷ WP e2 @ s; E {{ Φ }} ⊢ WP e1 @ s; E {{ Φ }}. Proof. intros ??. rewrite -wp_pure_step_fupd //. rewrite -step_fupd_intro //. Qed. End lifting.