Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Jonas Kastberg
iris
Commits
f8e693e7
Commit
f8e693e7
authored
Feb 22, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Some uPred style consistency tweaks.
parent
99968b53
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
5 additions
and
11 deletions
+5
-11
algebra/upred.v
algebra/upred.v
+5
-11
No files found.
algebra/upred.v
View file @
f8e693e7
...
...
@@ -398,7 +398,7 @@ Proof. intros ->; apply or_intro_r. Qed.
Lemma
exist_intro'
{
A
}
P
(
Ψ
:
A
→
uPred
M
)
a
:
P
⊑
Ψ
a
→
P
⊑
(
∃
a
,
Ψ
a
).
Proof
.
intros
->
;
apply
exist_intro
.
Qed
.
Lemma
forall_elim'
{
A
}
P
(
Ψ
:
A
→
uPred
M
)
:
P
⊑
(
∀
a
,
Ψ
a
)
→
(
∀
a
,
P
⊑
Ψ
a
).
Proof
.
move
=>
EQ
?.
rewrite
EQ
.
by
apply
forall_elim
.
Qed
.
Proof
.
move
=>
HP
a
.
by
rewrite
HP
forall_elim
.
Qed
.
Hint
Resolve
or_elim
or_intro_l'
or_intro_r'
.
Hint
Resolve
and_intro
and_elim_l'
and_elim_r'
.
...
...
@@ -532,14 +532,12 @@ Proof.
rewrite
-(
comm
_
P
)
and_exist_l
.
apply
exist_proper
=>
a
.
by
rewrite
comm
.
Qed
.
Lemma
const_intro_l
φ
Q
R
:
φ
→
(
■φ
∧
Q
)
⊑
R
→
Q
⊑
R
.
Lemma
const_intro_l
φ
Q
R
:
φ
→
(
■
φ
∧
Q
)
⊑
R
→
Q
⊑
R
.
Proof
.
intros
?
<-
;
auto
using
const_intro
.
Qed
.
Lemma
const_intro_r
φ
Q
R
:
φ
→
(
Q
∧
■φ
)
⊑
R
→
Q
⊑
R
.
Lemma
const_intro_r
φ
Q
R
:
φ
→
(
Q
∧
■
φ
)
⊑
R
→
Q
⊑
R
.
Proof
.
intros
?
<-
;
auto
using
const_intro
.
Qed
.
Lemma
const_intro_impl
φ
Q
R
:
φ
→
Q
⊑
(
■
φ
→
R
)
→
Q
⊑
R
.
Proof
.
intros
?
->
;
apply
(
const_intro_l
φ
)
;
first
done
.
by
rewrite
impl_elim_r
.
Qed
.
Proof
.
intros
?
->.
eauto
using
const_intro_l
,
impl_elim_r
.
Qed
.
Lemma
const_elim_l
φ
Q
R
:
(
φ
→
Q
⊑
R
)
→
(
■
φ
∧
Q
)
⊑
R
.
Proof
.
intros
;
apply
const_elim
with
φ
;
eauto
.
Qed
.
Lemma
const_elim_r
φ
Q
R
:
(
φ
→
Q
⊑
R
)
→
(
Q
∧
■
φ
)
⊑
R
.
...
...
@@ -549,11 +547,7 @@ Proof. intros; apply (anti_symm _); auto using const_intro. Qed.
Lemma
equiv_eq
{
A
:
cofeT
}
P
(
a
b
:
A
)
:
a
≡
b
→
P
⊑
(
a
≡
b
).
Proof
.
intros
->
;
apply
eq_refl
.
Qed
.
Lemma
eq_sym
{
A
:
cofeT
}
(
a
b
:
A
)
:
(
a
≡
b
)
⊑
(
b
≡
a
).
Proof
.
apply
(
eq_rewrite
a
b
(
λ
b
,
b
≡
a
)%
I
)
;
auto
using
eq_refl
.
intros
n
;
solve_proper
.
Qed
.
Proof
.
apply
(
eq_rewrite
a
b
(
λ
b
,
b
≡
a
)%
I
)
;
auto
using
eq_refl
.
solve_ne
.
Qed
.
(* BI connectives *)
Lemma
sep_mono
P
P'
Q
Q'
:
P
⊑
Q
→
P'
⊑
Q'
→
(
P
★
P'
)
⊑
(
Q
★
Q'
).
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment