Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Jonas Kastberg
iris
Commits
e7c2ac37
Commit
e7c2ac37
authored
Feb 16, 2016
by
Ralf Jung
Browse files
define the invariants and assertions we need for the proof
parent
86b8e9ed
Changes
1
Hide whitespace changes
Inline
Side-by-side
barrier/barrier.v
View file @
e7c2ac37
From
program_logic
Require
Export
sts
.
From
program_logic
Require
Export
sts
saved_prop
.
From
heap_lang
Require
Export
derived
heap
wp_tactics
notation
.
Definition
newchan
:
=
(
λ
:
""
,
ref
'
0
)%
L
.
...
...
@@ -83,4 +83,45 @@ Module barrier_proto.
Qed
.
End
barrier_proto
.
(* I am too lazy to type the full module name all the time. But then
why did we even put this into a module? Because some of the names
are so general.
What we'd really like here is to import *some* of the names from
the module into our namespaces. But Coq doesn't seem to support that...?? *)
Import
barrier_proto
.
(** Now we come to the Iris part of the proof. *)
Section
proof
.
Context
{
Σ
:
iFunctorG
}
(
N
:
namespace
).
(* TODO: Bundle HeapI and HeapG and have notation so that we can just write
"l ↦ '0". *)
Context
(
HeapI
:
gid
)
`
{!
HeapInG
Σ
HeapI
}
(
HeapG
:
gname
).
Context
(
StsI
:
gid
)
`
{!
sts
.
InG
heap_lang
Σ
StsI
sts
}.
Context
(
SpI
:
gid
)
`
{!
SavedPropInG
heap_lang
Σ
SpI
}.
Notation
iProp
:
=
(
iPropG
heap_lang
Σ
).
Definition
waiting
(
P
:
iProp
)
(
I
:
gset
gname
)
:
iProp
:
=
(
∃
Q
:
gmap
gname
iProp
,
True
)%
I
.
Definition
ress
(
I
:
gset
gname
)
:
iProp
:
=
(
True
)%
I
.
Definition
barrier_inv
(
l
:
loc
)
(
P
:
iProp
)
(
s
:
stateT
)
:
iProp
:
=
match
s
with
|
State
Low
I'
=>
(
heap_mapsto
HeapI
HeapG
l
(
'
0
)
★
waiting
P
I'
)%
I
|
State
High
I'
=>
(
heap_mapsto
HeapI
HeapG
l
(
'
1
)
★
ress
I'
)%
I
end
.
Definition
barrier_ctx
(
γ
:
gname
)
(
l
:
loc
)
(
P
:
iProp
)
:
iProp
:
=
(
heap_ctx
HeapI
HeapG
N
★
sts
.
ctx
StsI
sts
γ
N
(
barrier_inv
l
P
))%
I
.
Definition
send
(
l
:
loc
)
(
P
:
iProp
)
:
iProp
:
=
(
∃
γ
,
barrier_ctx
γ
l
P
★
sts
.
in_states
StsI
sts
γ
low_states
{[
Send
]})%
I
.
Definition
recv
(
l
:
loc
)
(
R
:
iProp
)
:
iProp
:
=
(
∃
γ
(
P
Q
:
iProp
)
i
,
barrier_ctx
γ
l
P
★
sts
.
in_states
StsI
sts
γ
(
i_states
i
)
{[
Change
i
]}
★
saved_prop_own
SpI
i
Q
★
▷
(
Q
-
★
R
))%
I
.
End
proof
.
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment