Commit e7c2ac37 authored by Ralf Jung's avatar Ralf Jung
Browse files

define the invariants and assertions we need for the proof

parent 86b8e9ed
From program_logic Require Export sts.
From program_logic Require Export sts saved_prop.
From heap_lang Require Export derived heap wp_tactics notation.
Definition newchan := (λ: "", ref '0)%L.
......@@ -83,4 +83,45 @@ Module barrier_proto.
Qed.
End barrier_proto.
(* I am too lazy to type the full module name all the time. But then
why did we even put this into a module? Because some of the names
are so general.
What we'd really like here is to import *some* of the names from
the module into our namespaces. But Coq doesn't seem to support that...?? *)
Import barrier_proto.
(** Now we come to the Iris part of the proof. *)
Section proof.
Context {Σ : iFunctorG} (N : namespace).
(* TODO: Bundle HeapI and HeapG and have notation so that we can just write
"l ↦ '0". *)
Context (HeapI : gid) `{!HeapInG Σ HeapI} (HeapG : gname).
Context (StsI : gid) `{!sts.InG heap_lang Σ StsI sts}.
Context (SpI : gid) `{!SavedPropInG heap_lang Σ SpI}.
Notation iProp := (iPropG heap_lang Σ).
Definition waiting (P : iProp) (I : gset gname) : iProp :=
( Q : gmap gname iProp, True)%I.
Definition ress (I : gset gname) : iProp :=
(True)%I.
Definition barrier_inv (l : loc) (P : iProp) (s : stateT) : iProp :=
match s with
| State Low I' => (heap_mapsto HeapI HeapG l ('0) waiting P I')%I
| State High I' => (heap_mapsto HeapI HeapG l ('1) ress I')%I
end.
Definition barrier_ctx (γ : gname) (l : loc) (P : iProp) : iProp :=
(heap_ctx HeapI HeapG N sts.ctx StsI sts γ N (barrier_inv l P))%I.
Definition send (l : loc) (P : iProp) : iProp :=
( γ, barrier_ctx γ l P sts.in_states StsI sts γ low_states {[ Send ]})%I.
Definition recv (l : loc) (R : iProp) : iProp :=
( γ (P Q : iProp) i, barrier_ctx γ l P sts.in_states StsI sts γ (i_states i) {[ Change i ]}
saved_prop_own SpI i Q (Q - R))%I.
End proof.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment