Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Jonas Kastberg
iris
Commits
df1feae2
Commit
df1feae2
authored
May 29, 2018
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
remove bi.big_... compatibility aliases for big-ops
parent
54efc60b
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
6 additions
and
16 deletions
+6
-16
tests/proofmode.v
tests/proofmode.v
+1
-1
theories/bi/bi.v
theories/bi/bi.v
+0
-8
theories/bi/big_op.v
theories/bi/big_op.v
+1
-3
theories/proofmode/ltac_tactics.v
theories/proofmode/ltac_tactics.v
+4
-4
No files found.
tests/proofmode.v
View file @
df1feae2
...
...
@@ -185,7 +185,7 @@ Lemma test_TC_resolution `{!BiAffine PROP} (Φ : nat → PROP) l x :
x
∈
l
→
([
∗
list
]
y
∈
l
,
Φ
y
)
-
∗
Φ
x
.
Proof
.
iIntros
(
Hp
)
"HT"
.
iDestruct
(
bi
.
bi
g_sepL_elem_of
_
_
_
Hp
with
"HT"
)
as
"Hp"
.
iDestruct
(
big_sepL_elem_of
_
_
_
Hp
with
"HT"
)
as
"Hp"
.
done
.
Qed
.
...
...
theories/bi/bi.v
View file @
df1feae2
...
...
@@ -6,16 +6,8 @@ Module Import bi.
Export
bi
.
interface
.
bi
.
Export
bi
.
derived_laws_bi
.
bi
.
Export
bi
.
derived_laws_sbi
.
bi
.
(* For better compatibility with some developments created during
gen_proofmode times, also provide bigops inside the bi
module. *)
Export
bi
.
big_op
.
bi
.
End
bi
.
(* For better compatibility with pre-gen_proofmode-Iris, also provide
bigops outside of the bi module. *)
Export
bi
.
big_op
.
bi
.
(* Hint DB for the logic *)
Hint
Resolve
pure_intro
.
Hint
Resolve
or_elim
or_intro_l'
or_intro_r'
:
BI
.
...
...
theories/bi/big_op.v
View file @
df1feae2
...
...
@@ -2,6 +2,7 @@ From iris.algebra Require Export big_op.
From
iris
.
bi
Require
Import
derived_laws_sbi
plainly
.
From
stdpp
Require
Import
countable
fin_collections
functions
.
Set
Default
Proof
Using
"Type"
.
Import
interface
.
bi
derived_laws_bi
.
bi
.
(* Notations *)
Notation
"'[∗' 'list]' k ↦ x ∈ l , P"
:
=
(
big_opL
bi_sep
(
λ
k
x
,
P
)
l
)
...
...
@@ -40,8 +41,6 @@ Notation "'[∗' 'mset]' x ∈ X , P" := (big_opMS bi_sep (λ x, P) X)
format
"[∗ mset] x ∈ X , P"
)
:
bi_scope
.
(** * Properties *)
Module
bi
.
Import
interface
.
bi
derived_laws_bi
.
bi
.
Section
bi_big_op
.
Context
{
PROP
:
bi
}.
Implicit
Types
Ps
Qs
:
list
PROP
.
...
...
@@ -876,4 +875,3 @@ Section gmultiset.
End
plainly
.
End
gmultiset
.
End
sbi_big_op
.
End
bi
.
theories/proofmode/ltac_tactics.v
View file @
df1feae2
...
...
@@ -2096,13 +2096,13 @@ below; see the discussion in !75 for further details. *)
Hint
Extern
0
(
envs_entails
_
(
_
≡
_
))
=>
rewrite
envs_entails_eq
;
apply
bi
.
internal_eq_refl
.
Hint
Extern
0
(
envs_entails
_
(
big_opL
_
_
_
))
=>
rewrite
envs_entails_eq
;
apply
bi
.
bi
g_sepL_nil'
.
rewrite
envs_entails_eq
;
apply
big_sepL_nil'
.
Hint
Extern
0
(
envs_entails
_
(
big_opM
_
_
_
))
=>
rewrite
envs_entails_eq
;
apply
bi
.
bi
g_sepM_empty'
.
rewrite
envs_entails_eq
;
apply
big_sepM_empty'
.
Hint
Extern
0
(
envs_entails
_
(
big_opS
_
_
_
))
=>
rewrite
envs_entails_eq
;
apply
bi
.
bi
g_sepS_empty'
.
rewrite
envs_entails_eq
;
apply
big_sepS_empty'
.
Hint
Extern
0
(
envs_entails
_
(
big_opMS
_
_
_
))
=>
rewrite
envs_entails_eq
;
apply
bi
.
bi
g_sepMS_empty'
.
rewrite
envs_entails_eq
;
apply
big_sepMS_empty'
.
Hint
Extern
0
(
envs_entails
_
(
∀
_
,
_
))
=>
iIntros
.
Hint
Extern
0
(
envs_entails
_
(
_
→
_
))
=>
iIntros
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment