Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Jonas Kastberg
iris
Commits
c75aa8f4
Commit
c75aa8f4
authored
Mar 11, 2017
by
Robbert Krebbers
Browse files
Update to latest stdpp.
parent
e772028a
Changes
4
Hide whitespace changes
Inline
Side-by-side
opam.pins
View file @
c75aa8f4
coq-stdpp https://gitlab.mpi-sws.org/robbertkrebbers/coq-stdpp
5061c3cbfe8954faa67dc5eed061c92eaca65308
coq-stdpp https://gitlab.mpi-sws.org/robbertkrebbers/coq-stdpp
09e255a930646d8a2b4302b82137356cf37681f3
theories/algebra/cmra.v
View file @
c75aa8f4
...
...
@@ -965,11 +965,7 @@ Section nat.
Instance
nat_op
:
Op
nat
:
=
plus
.
Definition
nat_op_plus
x
y
:
x
⋅
y
=
x
+
y
:
=
eq_refl
.
Lemma
nat_included
(
x
y
:
nat
)
:
x
≼
y
↔
x
≤
y
.
Proof
.
split
.
-
intros
[
z
->]
;
unfold
op
,
nat_op
;
lia
.
-
exists
(
y
-
x
).
by
apply
le_plus_minus
.
Qed
.
Proof
.
by
rewrite
nat_le_sum
.
Qed
.
Lemma
nat_ra_mixin
:
RAMixin
nat
.
Proof
.
apply
ra_total_mixin
;
try
by
eauto
.
...
...
@@ -1037,11 +1033,7 @@ Section positive.
Instance
pos_op
:
Op
positive
:
=
Pos
.
add
.
Definition
pos_op_plus
x
y
:
x
⋅
y
=
(
x
+
y
)%
positive
:
=
eq_refl
.
Lemma
pos_included
(
x
y
:
positive
)
:
x
≼
y
↔
(
x
<
y
)%
positive
.
Proof
.
split
.
-
intros
[
z
->]
;
unfold
op
,
pos_op
.
lia
.
-
exists
(
y
-
x
)%
positive
.
symmetry
.
apply
Pplus_minus
.
lia
.
Qed
.
Proof
.
by
rewrite
Plt_sum
.
Qed
.
Lemma
pos_ra_mixin
:
RAMixin
positive
.
Proof
.
split
;
try
by
eauto
.
...
...
theories/algebra/frac.v
View file @
c75aa8f4
...
...
@@ -11,18 +11,8 @@ Instance frac_valid : Valid frac := λ x, (x ≤ 1)%Qc.
Instance
frac_pcore
:
PCore
frac
:
=
λ
_
,
None
.
Instance
frac_op
:
Op
frac
:
=
λ
x
y
,
(
x
+
y
)%
Qp
.
(* TODO: Find better place for this lemma. *)
Lemma
Qp_le_sum
(
x
y
:
Qp
)
:
(
x
<
y
)%
Qc
↔
(
∃
z
,
y
=
x
+
z
)%
Qp
.
Proof
.
split
.
-
intros
Hlt
%
Qclt_minus_iff
.
exists
(
mk_Qp
(
y
-
x
)
Hlt
).
apply
Qp_eq
;
simpl
.
by
rewrite
(
Qcplus_comm
y
)
Qcplus_assoc
Qcplus_opp_r
Qcplus_0_l
.
-
intros
[
z
->%
leibniz_equiv
]
;
simpl
.
rewrite
-{
1
}(
Qcplus_0_r
x
).
apply
Qcplus_lt_mono_l
,
Qp_prf
.
Qed
.
Lemma
frac_included
(
x
y
:
frac
)
:
x
≼
y
↔
(
x
<
y
)%
Qc
.
Proof
.
symmetry
.
exact
:
Qp_l
e
_sum
.
Qed
.
Proof
.
by
rewrite
Qp_l
t
_sum
.
Qed
.
Corollary
frac_included_weak
(
x
y
:
frac
)
:
x
≼
y
→
(
x
≤
y
)%
Qc
.
Proof
.
intros
?%
frac_included
.
auto
using
Qclt_le_weak
.
Qed
.
...
...
theories/algebra/ofe.v
View file @
c75aa8f4
...
...
@@ -346,7 +346,7 @@ Section fixpoint.
{
apply
equiv_dist
=>
n
.
rewrite
/
fp2
(
conv_compl
n
)
/=
/
chcar
.
induction
n
as
[|
n
IH
]
;
simpl
;
eauto
using
contractive_0
,
contractive_S
.
}
rewrite
-(
fixpoint_unique
fp2
)
//.
apply
Hlim
=>
n
/=.
by
apply
n
at_iter_ind
.
apply
Hlim
=>
n
/=.
by
apply
N
at_iter_ind
.
Qed
.
End
fixpoint
.
...
...
@@ -419,7 +419,7 @@ Section fixpointK.
P
(
fixpointK
k
f
).
Proof
.
intros
.
rewrite
/
fixpointK
.
apply
fixpoint_ind
;
eauto
.
intros
;
apply
n
at_iter_ind
;
auto
.
intros
;
apply
N
at_iter_ind
;
auto
.
Qed
.
End
fixpointK
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment