### CHANGE <intuit> to <#>

parent 803e091e
 ... ... @@ -156,7 +156,7 @@ s/\blist_singletonM_included\b/list_singleton_included/g - quantifiers[†]: `forall` for `∀` and `exists` for `∃` - separation logic: `**` for `∗`, `-*` for `-∗`, and `*-*` for `∗-∗` - step indexing: `|>` for `▷` - modalities: `` for `□` and `` for `◇` - modalities: `<#>` for `□` and `` for `◇` - most derived notations can be computed from previous notations using the substitutions above, e.g. replace `∗` with `*` and `▷` with `|>`. Examples include the following: ... ...
 ... ... @@ -11,10 +11,10 @@ Section base_logic_tests. Lemma test_random_stuff (P1 P2 P3 : nat -> uPred M) : |-- forall (x y : nat) a b, x ≡ y -> (uPred_ownM (a ⋅ b) -* (exists y1 y2 c, P1 ((x + y1) + y2) ∧ True ∧ uPred_ownM c) -* |> (forall z, P2 z ∨ True -> P2 z) -* |> (forall n m : nat, P1 n -> (True ∧ P2 n -> (⌜n = n⌝ ↔ P3 n))) -* <#> (uPred_ownM (a ⋅ b) -* (exists y1 y2 c, P1 ((x + y1) + y2) ∧ True ∧ <#> uPred_ownM c) -* <#> |> (forall z, P2 z ∨ True -> P2 z) -* |> (forall n m : nat, P1 n -> <#> (True ∧ P2 n -> <#> (⌜n = n⌝ ↔ P3 n))) -* |> ⌜x = 0⌝ \/ exists x z, |> P3 (x + z) ** uPred_ownM b ** uPred_ownM (core b)). Proof. iIntros (i [|j] a b ?) "!> [Ha Hb] H1 #H2 H3"; setoid_subst. ... ...
 ... ... @@ -50,8 +50,8 @@ Notation "P <-> Q" := (P ↔ Q)%I (at level 95, no associativity, only parsing) Notation "P *-* Q" := (P ∗-∗ Q)%I (at level 95, no associativity, only parsing) : bi_scope. Notation "'' P" := (□ P)%I (at level 20, right associativity, only parsing) : bi_scope. Notation "'?' p P" := (□?p P)%I (at level 20, p at level 9, P at level 20, Notation "'<#>' P" := (□ P)%I (at level 20, right associativity, only parsing) : bi_scope. Notation "'<#>?' p P" := (□?p P)%I (at level 20, p at level 9, P at level 20, right associativity, only parsing) : bi_scope. Notation "'' P" := (◇ P)%I (at level 20, right associativity, only parsing) : bi_scope. ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!