### Functoriality of agreement.

```Also change the definition of agreement slightly, so agree_map can be defined
for any function, and not just non-expansive functions.```
parent 982d20ee
 ... @@ -5,36 +5,33 @@ Record agree A `{Dist A} := Agree { ... @@ -5,36 +5,33 @@ Record agree A `{Dist A} := Agree { agree_car :> nat → A; agree_car :> nat → A; agree_is_valid : nat → Prop; agree_is_valid : nat → Prop; agree_valid_0 : agree_is_valid 0; agree_valid_0 : agree_is_valid 0; agree_valid_S n : agree_is_valid (S n) → agree_is_valid n; agree_valid_S n : agree_is_valid (S n) → agree_is_valid n agree_cauchy n i: n ≤ i → agree_is_valid i → agree_car n ={n}= agree_car i }. }. Arguments Agree {_ _} _ _ _ _ _. Arguments Agree {_ _} _ _ _ _. Arguments agree_car {_ _} _ _. Arguments agree_car {_ _} _ _. Arguments agree_is_valid {_ _} _ _. Arguments agree_is_valid {_ _} _ _. Arguments agree_cauchy {_ _} _ _ _ _ _. Section agree. Section agree. Context `{Cofe A}. Context `{Cofe A}. Global Instance agree_validN : ValidN (agree A) := λ n x, agree_is_valid x n. Global Instance agree_validN : ValidN (agree A) := λ n x, Lemma agree_valid_le (x : agree A) n n' : validN n x → n' ≤ n → validN n' x. agree_is_valid x n ∧ ∀ n', n' ≤ n → x n' ={n'}= x n. Proof. unfold validN, agree_validN; induction 2; eauto using agree_valid_S. Qed. Lemma agree_valid_le (x : agree A) n n' : agree_is_valid x n → n' ≤ n → agree_is_valid x n'. Proof. induction 2; eauto using agree_valid_S. Qed. Global Instance agree_valid : Valid (agree A) := λ x, ∀ n, validN n x. Global Instance agree_valid : Valid (agree A) := λ x, ∀ n, validN n x. Global Instance agree_equiv : Equiv (agree A) := λ x y, Global Instance agree_equiv : Equiv (agree A) := λ x y, (∀ n, validN n x ↔ validN n y) ∧ (∀ n, validN n x → x n ={n}= y n). (∀ n, agree_is_valid x n ↔ agree_is_valid y n) ∧ (∀ n, agree_is_valid x n → x n ={n}= y n). Global Instance agree_dist : Dist (agree A) := λ n x y, Global Instance agree_dist : Dist (agree A) := λ n x y, (∀ n', n' ≤ n → validN n' x ↔ validN n' y) ∧ (∀ n', n' ≤ n → agree_is_valid x n' ↔ agree_is_valid y n') ∧ (∀ n', n' ≤ n → validN n' x → x n' ={n'}= y n'). (∀ n', n' ≤ n → agree_is_valid x n' → x n' ={n'}= y n'). Global Program Instance agree_compl : Compl (agree A) := λ c, Global Program Instance agree_compl : Compl (agree A) := λ c, {| agree_car n := c n n; agree_is_valid n := validN n (c n) |}. {| agree_car n := c n n; agree_is_valid n := agree_is_valid (c n) n |}. Next Obligation. intros; apply agree_valid_0. Qed. Next Obligation. intros; apply agree_valid_0. Qed. Next Obligation. Next Obligation. intros c n ?; apply (chain_cauchy c n (S n)), agree_valid_S; auto. intros c n ?; apply (chain_cauchy c n (S n)), agree_valid_S; auto. Qed. Qed. Next Obligation. intros c n i ??; simpl in *; rewrite <-(agree_cauchy (c i) n i) by done. by apply (chain_cauchy c), (chain_cauchy c) with i, agree_valid_le with i. Qed. Instance agree_cofe : Cofe (agree A). Instance agree_cofe : Cofe (agree A). Proof. Proof. split. split. ... @@ -45,7 +42,7 @@ Proof. ... @@ -45,7 +42,7 @@ Proof. + by split. + by split. + by intros x y Hxy; split; intros; symmetry; apply Hxy; auto; apply Hxy. + by intros x y Hxy; split; intros; symmetry; apply Hxy; auto; apply Hxy. + intros x y z Hxy Hyz; split; intros n'; intros. + intros x y z Hxy Hyz; split; intros n'; intros. - transitivity (validN n' y). by apply Hxy. by apply Hyz. - transitivity (agree_is_valid y n'). by apply Hxy. by apply Hyz. - transitivity (y n'). by apply Hxy. by apply Hyz, Hxy. - transitivity (y n'). by apply Hxy. by apply Hyz, Hxy. * intros n x y Hxy; split; intros; apply Hxy; auto. * intros n x y Hxy; split; intros; apply Hxy; auto. * intros x y; split; intros n'; rewrite Nat.le_0_r; intros ->; [|done]. * intros x y; split; intros n'; rewrite Nat.le_0_r; intros ->; [|done]. ... @@ -54,10 +51,10 @@ Proof. ... @@ -54,10 +51,10 @@ Proof. Qed. Qed. Global Program Instance agree_op : Op (agree A) := λ x y, Global Program Instance agree_op : Op (agree A) := λ x y, {| agree_car := x; agree_is_valid n := validN n x ∧ validN n y ∧ x ={n}= y |}. {| agree_car := x; agree_is_valid n := agree_is_valid x n ∧ agree_is_valid y n ∧ x ={n}= y |}. Next Obligation. by intros; simpl; split_ands; try apply agree_valid_0. Qed. Next Obligation. by intros; simpl; split_ands; try apply agree_valid_0. Qed. Next Obligation. naive_solver eauto using agree_valid_le, dist_S. Qed. Next Obligation. naive_solver eauto using agree_valid_S, dist_S. Qed. Next Obligation. by intros x y n i ? (?&?&?); apply agree_cauchy. Qed. Global Instance agree_unit : Unit (agree A) := id. Global Instance agree_unit : Unit (agree A) := id. Global Instance agree_minus : Minus (agree A) := λ x y, x. Global Instance agree_minus : Minus (agree A) := λ x y, x. Global Instance agree_included : Included (agree A) := λ x y, y ≡ x ⋅ y. Global Instance agree_included : Included (agree A) := λ x y, y ≡ x ⋅ y. ... @@ -96,49 +93,57 @@ Instance: Proper ((≡) ==> (≡) ==> (≡)) op := ne_proper_2 _. ... @@ -96,49 +93,57 @@ Instance: Proper ((≡) ==> (≡) ==> (≡)) op := ne_proper_2 _. Global Instance agree_cmra : CMRA (agree A). Global Instance agree_cmra : CMRA (agree A). Proof. Proof. split; try (apply _ || done). split; try (apply _ || done). * by intros n x y Hxy ?; apply Hxy. * intros n x y Hxy [? Hx]; split; [by apply Hxy|intros n' ?]. rewrite <-(proj2 Hxy n'), (Hx n') by eauto using agree_valid_le. by apply dist_le with n; try apply Hxy. * by intros n x1 x2 Hx y1 y2 Hy. * by intros n x1 x2 Hx y1 y2 Hy. * by intros x y1 y2 Hy ?; do 2 red; rewrite <-Hy. * by intros x y1 y2 Hy ?; do 2 red; rewrite <-Hy. * intros; apply agree_valid_0. * intros x; split; [apply agree_valid_0|]. * intros n x ?; apply agree_valid_le with (S n); auto. by intros n'; rewrite Nat.le_0_r; intros ->. * intros n x [? Hx]; split; [by apply agree_valid_S|intros n' ?]. rewrite (Hx n') by auto; symmetry; apply dist_le with n; try apply Hx; auto. * intros x; apply agree_idempotent. * intros x; apply agree_idempotent. * intros x y; change (x ⋅ y ≡ x ⋅ (x ⋅ y)). * intros x y; change (x ⋅ y ≡ x ⋅ (x ⋅ y)). by rewrite (associative _), agree_idempotent. by rewrite (associative _), agree_idempotent. * by intros x y n (?&?&?). * by intros x y n [(?&?&?) ?]. * by intros x y; do 2 red; rewrite (associative _), agree_idempotent. * by intros x y; do 2 red; rewrite (associative _), agree_idempotent. Qed. Qed. Program Definition to_agree (x : A) : agree A := {| agree_car n := x; agree_is_valid n := True |}. Solve Obligations with done. Global Instance to_agree_ne n : Proper (dist n ==> dist n) to_agree. Proof. intros x1 x2 Hx; split; naive_solver eauto using @dist_le. Qed. Lemma agree_op_inv (x y1 y2 : agree A) n : Lemma agree_op_inv (x y1 y2 : agree A) n : validN n x → x ={n}= y1 ⋅ y2 → y1 ={n}= y2. validN n x → x ={n}= y1 ⋅ y2 → y1 ={n}= y2. Proof. by intros ? Hxy; apply Hxy. Qed. Proof. by intros [??] Hxy; apply Hxy. Qed. Global Instance agree_extend : CMRAExtend (agree A). Global Instance agree_extend : CMRAExtend (agree A). Proof. Proof. intros x y1 y2 n ? Hx; exists (x,x); simpl; split. intros x y1 y2 n ? Hx; exists (x,x); simpl; split. * by rewrite agree_idempotent. * by rewrite agree_idempotent. * by rewrite Hx, (agree_op_inv x y1 y2), agree_idempotent by done. * by rewrite Hx, (agree_op_inv x y1 y2), agree_idempotent by done. Qed. Qed. Program Definition to_agree (x : A) : agree A := {| agree_car n := x; agree_is_valid n := True |}. Solve Obligations with done. Global Instance to_agree_ne n : Proper (dist n ==> dist n) to_agree. Proof. intros x1 x2 Hx; split; naive_solver eauto using @dist_le. Qed. Lemma agree_car_ne (x y : agree A) n : validN n x → x ={n}= y → x n ={n}= y n. Proof. by intros [??] Hxy; apply Hxy. Qed. Lemma agree_cauchy (x : agree A) n i : n ≤ i → validN i x → x n ={n}= x i. Proof. by intros ? [? Hx]; apply Hx. Qed. Lemma agree_to_agree_inj (x y : agree A) a n : validN n x → x ={n}= to_agree a ⋅ y → x n ={n}= a. Proof. by intros; transitivity ((to_agree a ⋅ y) n); [by apply agree_car_ne|]. Qed. End agree. End agree. Canonical Structure agreeRA (A : cofeT) : cmraT := CMRAT (agree A). Section agree_map. Section agree_map. Context `{Cofe A, Cofe B} (f: A → B) `{Hf: ∀ n, Proper (dist n ==> dist n) f}. Context `{Cofe A,Cofe B} (f : A → B) `{Hf: ∀ n, Proper (dist n ==> dist n) f}. Program Definition agree_map (x : agree A) : agree B := Program Definition agree_map (x : agree A) : agree B := {| agree_car n := f (x n); agree_is_valid n := validN n x |}. {| agree_car n := f (x n); agree_is_valid := agree_is_valid x |}. Next Obligation. apply agree_valid_0. Qed. Solve Obligations with auto using agree_valid_0, agree_valid_S. Next Obligation. by intros x n ?; apply agree_valid_S. Qed. Next Obligation. by intros x n i ??; simpl; rewrite (agree_cauchy x n i). Qed. Global Instance agree_map_ne n : Proper (dist n ==> dist n) agree_map. Global Instance agree_map_ne n : Proper (dist n ==> dist n) agree_map. Proof. by intros x1 x2 Hx; split; simpl; intros; [apply Hx|apply Hf, Hx]. Qed. Proof. by intros x1 x2 Hx; split; simpl; intros; [apply Hx|apply Hf, Hx]. Qed. Global Instance agree_map_proper: Proper ((≡)==>(≡)) agree_map := ne_proper _. Global Instance agree_map_proper: Proper ((≡)==>(≡)) agree_map := ne_proper _. Global Instance agree_map_preserving : CMRAPreserving agree_map. Global Instance agree_map_preserving : CMRAPreserving agree_map. Proof. Proof. split; [|by intros n ?]. split; [|by intros n x [? Hx]; split; simpl; [|by intros n' ?; rewrite Hx]]. intros x y; unfold included, agree_included; intros Hy; rewrite Hy. intros x y; unfold included, agree_included; intros Hy; rewrite Hy. split; [split|done]. split; [split|done]. * by intros (?&?&Hxy); repeat (intro || split); * by intros (?&?&Hxy); repeat (intro || split); ... @@ -147,6 +152,17 @@ Section agree_map. ... @@ -147,6 +152,17 @@ Section agree_map. try apply Hxy; eauto using agree_valid_le. try apply Hxy; eauto using agree_valid_le. Qed. Qed. End agree_map. End agree_map. Lemma agree_map_id `{Cofe A} (x : agree A) : agree_map id x = x. Proof. by destruct x. Qed. Lemma agree_map_compose `{Cofe A, Cofe B, Cofe C} (f : A → B) (g : B → C) (x : agree A) : agree_map (g ∘ f) x = agree_map g (agree_map f x). Proof. done. Qed. Canonical Structure agreeRA (A : cofeT) : cmraT := CMRAT (agree A). Definition agreeRA_map {A B} (f : A -n> B) : agreeRA A -n> agreeRA B := Definition agreeRA_map {A B} (f : A -n> B) : agreeRA A -n> agreeRA B := CofeMor (agree_map f : agreeRA A → agreeRA B). CofeMor (agree_map f : agreeRA A → agreeRA B). Instance agreeRA_map_ne A B n : Proper (dist n ==> dist n) (@agreeRA_map A B). Proof. intros f g Hfg x; split; simpl; intros; [done|]. by apply dist_le with n; try apply Hfg. Qed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!