Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Jonas Kastberg
iris
Commits
aa9b972e
Commit
aa9b972e
authored
Aug 11, 2016
by
Robbert Krebbers
Browse files
No longer use later_car in the logic.
It is not non-expansive, so not a function we should use.
parent
936db861
Changes
4
Hide whitespace changes
Inline
Side-by-side
algebra/cofe.v
View file @
aa9b972e
...
...
@@ -675,8 +675,6 @@ Inductive later (A : Type) : Type := Next { later_car : A }.
Add
Printing
Constructor
later
.
Arguments
Next
{
_
}
_
.
Arguments
later_car
{
_
}
_
.
Lemma
later_eta
{
A
}
(
x
:
later
A
)
:
Next
(
later_car
x
)
=
x
.
Proof
.
by
destruct
x
.
Qed
.
Section
later
.
Context
{
A
:
cofeT
}.
...
...
algebra/upred.v
View file @
aa9b972e
...
...
@@ -1213,8 +1213,7 @@ Lemma prod_validI {A B : cmraT} (x : A * B) : ✓ x ⊣⊢ ✓ x.1 ∧ ✓ x.2.
Proof
.
by
unseal
.
Qed
.
(* Later *)
Lemma
later_equivI
{
A
:
cofeT
}
(
x
y
:
later
A
)
:
x
≡
y
⊣
⊢
▷
(
later_car
x
≡
later_car
y
).
Lemma
later_equivI
{
A
:
cofeT
}
(
x
y
:
A
)
:
Next
x
≡
Next
y
⊣
⊢
▷
(
x
≡
y
).
Proof
.
by
unseal
.
Qed
.
(* Discrete *)
...
...
program_logic/ownership.v
View file @
aa9b972e
...
...
@@ -126,7 +126,7 @@ Proof.
iRewrite
"HI"
in
"HvI"
.
rewrite
uPred
.
option_validI
agree_validI
.
iRewrite
-
"HvI"
in
"HI"
.
by
rewrite
agree_idemp
.
}
rewrite
/
invariant_unfold
.
by
rewrite
agree_equivI
uPred
.
later_equivI
/=
iProp_unfold_equivI
.
by
rewrite
agree_equivI
uPred
.
later_equivI
iProp_unfold_equivI
.
Qed
.
Lemma
ownI_open
i
P
:
wsat
★
ownI
i
P
★
ownE
{[
i
]}
⊢
wsat
★
▷
P
★
ownD
{[
i
]}.
...
...
program_logic/saved_prop.v
View file @
aa9b972e
...
...
@@ -35,7 +35,7 @@ Section saved_prop.
Lemma
saved_prop_agree
γ
x
y
:
saved_prop_own
γ
x
★
saved_prop_own
γ
y
⊢
▷
(
x
≡
y
).
Proof
.
rewrite
-
own_op
own_valid
agree_validI
agree_equivI
later_equivI
/=
.
rewrite
-
own_op
own_valid
agree_validI
agree_equivI
later_equivI
.
set
(
G1
:
=
cFunctor_map
F
(
iProp_fold
,
iProp_unfold
)).
set
(
G2
:
=
cFunctor_map
F
(@
iProp_unfold
Σ
,
@
iProp_fold
Σ
)).
assert
(
∀
z
,
G2
(
G1
z
)
≡
z
)
as
help
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment