Commit a988acd6 by Robbert Krebbers

Make use of OFE isomorphisms in COFE solver.

parent 415685af
 ... ... @@ -4,13 +4,8 @@ Set Default Proof Using "Type". Record solution (F : oFunctor) := Solution { solution_car :> ofeT; solution_cofe : Cofe solution_car; solution_unfold : solution_car -n> F solution_car _; solution_fold : F solution_car _ -n> solution_car; solution_fold_unfold X : solution_fold (solution_unfold X) ≡ X; solution_unfold_fold X : solution_unfold (solution_fold X) ≡ X solution_iso :> ofe_iso (F solution_car _) solution_car; }. Arguments solution_unfold {_} _. Arguments solution_fold {_} _. Existing Instance solution_cofe. Module solver. Section solver. ... ... @@ -210,7 +205,7 @@ Proof. by intros n X Y HXY k; rewrite /fold /= HXY. Qed. Theorem result : solution F. Proof using Type*. apply (Solution F T _ (OfeMor unfold) (OfeMor fold)). refine (Solution F T _ (OfeIso (OfeMor fold) (OfeMor unfold) _ _)). - move=> X /=. rewrite equiv_dist=> n k; rewrite /unfold /fold /=. rewrite -g_tower -(gg_tower _ n); apply (_ : Proper (_ ==> _) (g _)). trans (map (ff n, gg n) (X (S (n + k)))). ... ...
 ... ... @@ -147,12 +147,13 @@ Module Export iProp_solution : iProp_solution_sig. Notation iPropO Σ := (uPredO (iResUR Σ)). Definition iProp_unfold {Σ} : iPropO Σ -n> iPrePropO Σ := solution_fold (iProp_result Σ). Definition iProp_fold {Σ} : iPrePropO Σ -n> iPropO Σ := solution_unfold _. ofe_iso_1 (iProp_result Σ). Definition iProp_fold {Σ} : iPrePropO Σ -n> iPropO Σ := ofe_iso_2 (iProp_result Σ). Lemma iProp_fold_unfold {Σ} (P : iProp Σ) : iProp_fold (iProp_unfold P) ≡ P. Proof. apply solution_unfold_fold. Qed. Proof. apply ofe_iso_21. Qed. Lemma iProp_unfold_fold {Σ} (P : iPrePropO Σ) : iProp_unfold (iProp_fold P) ≡ P. Proof. apply solution_fold_unfold. Qed. Proof. apply ofe_iso_12. Qed. End iProp_solution. ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!