Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Jonas Kastberg
iris
Commits
a90a8e99
Commit
a90a8e99
authored
Jul 23, 2016
by
Robbert Krebbers
Browse files
CMRA structure on gsets that avoids the indirection via maps.
Also, add algebra/gset to _CoqProject.
parent
c46bb2a0
Changes
2
Hide whitespace changes
Inline
Side-by-side
_CoqProject
View file @
a90a8e99
...
...
@@ -59,6 +59,7 @@ algebra/frac.v
algebra/csum.v
algebra/list.v
algebra/updates.v
algebra/gset.v
program_logic/model.v
program_logic/adequacy.v
program_logic/hoare_lifting.v
...
...
algebra/gset.v
View file @
a90a8e99
From
iris
.
algebra
Require
Export
gmap
.
From
iris
.
algebra
Require
Import
excl
.
From
iris
.
prelude
Require
Im
port
map
set
.
From
iris
.
algebra
Require
Export
cmra
.
From
iris
.
algebra
Require
Import
updates
.
From
iris
.
prelude
Require
Ex
port
collections
g
map
.
Definition
gsetC
K
`
{
Countable
K
}
:
=
gmapC
K
(
exclC
unitC
).
Definition
to_gsetC
`
{
Countable
K
}
(
X
:
gset
K
)
:
gsetC
K
:
=
to_gmap
(
Excl
())
X
.
Inductive
gset_disj
K
`
{
Countable
K
}
:
=
|
GSet
:
gset
K
→
gset_disj
K
|
GSetBot
:
gset_disj
K
.
Arguments
GSet
{
_
_
_
}
_
.
Arguments
GSetBot
{
_
_
_
}.
Section
gset
.
Context
`
{
Countable
K
}.
Implicit
Types
X
Y
:
gset
K
.
Lemma
to_gsetC_empty
:
to_gsetC
(
∅
:
gset
K
)
=
∅
.
Proof
.
apply
to_gmap_empty
.
Qed
.
Lemma
to_gsetC_union
X
Y
:
X
⊥
Y
→
to_gsetC
X
⋅
to_gsetC
Y
=
to_gsetC
(
X
∪
Y
).
Proof
.
intros
HXY
;
apply
:
map_eq
=>
i
;
rewrite
/
to_gsetC
/=.
rewrite
lookup_op
!
lookup_to_gmap
.
repeat
case_option_guard
;
set_solver
.
Qed
.
Lemma
to_gsetC_valid
X
:
✓
to_gsetC
X
.
Proof
.
intros
i
.
rewrite
/
to_gsetC
lookup_to_gmap
.
by
case_option_guard
.
Qed
.
Lemma
to_gsetC_valid_op
X
Y
:
✓
(
to_gsetC
X
⋅
to_gsetC
Y
)
↔
X
⊥
Y
.
Proof
.
split
;
last
(
intros
;
rewrite
to_gsetC_union
//
;
apply
to_gsetC_valid
).
intros
HXY
i
??
;
move
:
(
HXY
i
)
;
rewrite
lookup_op
!
lookup_to_gmap
.
rewrite
!
option_guard_True
//.
Qed
.
Context
`
{
Fresh
K
(
gset
K
),
!
FreshSpec
K
(
gset
K
)}.
Lemma
updateP_alloc_strong
(
Q
:
gsetC
K
→
Prop
)
(
I
:
gset
K
)
X
:
(
∀
i
,
i
∉
X
→
i
∉
I
→
Q
(
to_gsetC
({[
i
]}
∪
X
)))
→
to_gsetC
X
~~>
:
Q
.
Proof
.
intros
;
apply
updateP_alloc_strong
with
I
(
Excl
())
;
[
done
|]=>
i
.
rewrite
/
to_gsetC
lookup_to_gmap_None
-
to_gmap_union_singleton
;
eauto
.
Qed
.
Lemma
updateP_alloc
(
Q
:
gsetC
K
→
Prop
)
X
:
(
∀
i
,
i
∉
X
→
Q
(
to_gsetC
({[
i
]}
∪
X
)))
→
to_gsetC
X
~~>
:
Q
.
Proof
.
move
=>??.
eapply
updateP_alloc_strong
with
(
I
:
=
∅
)
;
by
eauto
.
Qed
.
Lemma
updateP_alloc_strong'
(
I
:
gset
K
)
X
:
to_gsetC
X
~~>
:
λ
Y
:
gsetC
K
,
∃
i
,
Y
=
to_gsetC
({[
i
]}
∪
X
)
∧
i
∉
I
∧
i
∉
X
.
Proof
.
eauto
using
updateP_alloc_strong
.
Qed
.
Lemma
updateP_alloc'
X
:
to_gsetC
X
~~>
:
λ
Y
:
gsetC
K
,
∃
i
,
Y
=
to_gsetC
({[
i
]}
∪
X
)
∧
i
∉
X
.
Proof
.
eauto
using
updateP_alloc
.
Qed
.
End
gset
.
\ No newline at end of file
Context
`
{
Countable
K
}.
Arguments
op
_
_
!
_
!
_
/.
Canonical
Structure
gset_disjC
:
=
leibnizC
(
gset_disj
K
).
Instance
gset_disj_valid
:
Valid
(
gset_disj
K
)
:
=
λ
X
,
match
X
with
GSet
_
=>
True
|
GSetBot
=>
False
end
.
Instance
gset_disj_empty
:
Empty
(
gset_disj
K
)
:
=
GSet
∅
.
Instance
gset_disj_op
:
Op
(
gset_disj
K
)
:
=
λ
X
Y
,
match
X
,
Y
with
|
GSet
X
,
GSet
Y
=>
if
decide
(
X
⊥
Y
)
then
GSet
(
X
∪
Y
)
else
GSetBot
|
_
,
_
=>
GSetBot
end
.
Instance
gset_disj_pcore
:
PCore
(
gset_disj
K
)
:
=
λ
_
,
Some
∅
.
Ltac
gset_disj_solve
:
=
repeat
(
simpl
||
case_decide
)
;
first
[
apply
(
f_equal
GSet
)|
done
|
exfalso
]
;
set_solver
by
eauto
.
Lemma
gset_disj_valid_inv_l
X
Y
:
✓
(
GSet
X
⋅
Y
)
→
∃
Y'
,
Y
=
GSet
Y'
∧
X
⊥
Y'
.
Proof
.
destruct
Y
;
repeat
(
simpl
||
case_decide
)
;
by
eauto
.
Qed
.
Lemma
gset_disj_union
X
Y
:
X
⊥
Y
→
GSet
X
⋅
GSet
Y
=
GSet
(
X
∪
Y
).
Proof
.
intros
.
by
rewrite
/=
decide_True
.
Qed
.
Lemma
gset_disj_valid_op
X
Y
:
✓
(
GSet
X
⋅
GSet
Y
)
↔
X
⊥
Y
.
Proof
.
simpl
.
case_decide
;
by
split
.
Qed
.
Lemma
gset_disj_ra_mixin
:
RAMixin
(
gset_disj
K
).
Proof
.
apply
ra_total_mixin
;
eauto
.
-
intros
[?|]
;
destruct
1
;
gset_disj_solve
.
-
by
constructor
.
-
by
destruct
1
.
-
intros
[
X1
|]
[
X2
|]
[
X3
|]
;
gset_disj_solve
.
-
intros
[
X1
|]
[
X2
|]
;
gset_disj_solve
.
-
intros
[
X
|]
;
gset_disj_solve
.
-
exists
(
GSet
∅
)
;
gset_disj_solve
.
-
intros
[
X1
|]
[
X2
|]
;
gset_disj_solve
.
Qed
.
Canonical
Structure
gset_disjR
:
=
discreteR
(
gset_disj
K
)
gset_disj_ra_mixin
.
Lemma
gset_disj_ucmra_mixin
:
UCMRAMixin
(
gset_disj
K
).
Proof
.
split
;
try
apply
_
||
done
.
intros
[
X
|]
;
gset_disj_solve
.
Qed
.
Canonical
Structure
gset_disjUR
:
=
discreteUR
(
gset_disj
K
)
gset_disj_ra_mixin
gset_disj_ucmra_mixin
.
Context
`
{
Fresh
K
(
gset
K
),
!
FreshSpec
K
(
gset
K
)}.
Arguments
op
_
_
_
_
:
simpl
never
.
Lemma
updateP_alloc_strong
(
Q
:
gset_disj
K
→
Prop
)
(
I
:
gset
K
)
X
:
(
∀
i
,
i
∉
X
→
i
∉
I
→
Q
(
GSet
({[
i
]}
∪
X
)))
→
GSet
X
~~>
:
Q
.
Proof
.
intros
HQ
;
apply
cmra_discrete_updateP
=>
?
/
gset_disj_valid_inv_l
[
Y
[->?]].
destruct
(
exist_fresh
(
X
∪
Y
∪
I
))
as
[
i
?].
exists
(
GSet
({[
i
]}
∪
X
))
;
split
.
-
apply
HQ
;
set_solver
by
eauto
.
-
apply
gset_disj_valid_op
.
set_solver
by
eauto
.
Qed
.
Lemma
updateP_alloc
(
Q
:
gset_disj
K
→
Prop
)
X
:
(
∀
i
,
i
∉
X
→
Q
(
GSet
({[
i
]}
∪
X
)))
→
GSet
X
~~>
:
Q
.
Proof
.
move
=>??.
eapply
updateP_alloc_strong
with
(
I
:
=
∅
)
;
by
eauto
.
Qed
.
Lemma
updateP_alloc_strong'
(
I
:
gset
K
)
X
:
GSet
X
~~>
:
λ
Y
,
∃
i
,
Y
=
GSet
({[
i
]}
∪
X
)
∧
i
∉
I
∧
i
∉
X
.
Proof
.
eauto
using
updateP_alloc_strong
.
Qed
.
Lemma
updateP_alloc'
X
:
GSet
X
~~>
:
λ
Y
,
∃
i
,
Y
=
GSet
({[
i
]}
∪
X
)
∧
i
∉
X
.
Proof
.
eauto
using
updateP_alloc
.
Qed
.
End
gset
.
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment