Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Jonas Kastberg
iris
Commits
94cfebc2
Commit
94cfebc2
authored
Jun 07, 2019
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
change frac_auth notation
parent
265c2a13
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
29 additions
and
28 deletions
+29
-28
CHANGELOG.md
CHANGELOG.md
+1
-0
theories/algebra/frac_auth.v
theories/algebra/frac_auth.v
+25
-25
theories/heap_lang/lib/counter.v
theories/heap_lang/lib/counter.v
+3
-3
No files found.
CHANGELOG.md
View file @
94cfebc2
...
...
@@ -143,6 +143,7 @@ Changes in Coq:
*
Add the camera
`ufrac`
for unbounded fractions (i.e. without fractions that
can be
`> 1`
) and the camera
`ufrac_auth`
for a variant of the authoritative
fractional camera (
`frac_auth`
) with unbounded fractions.
*
Changed
`frac_auth`
notation from
`●!`
/
`◯!`
to
`●F`
/
`◯F`
.
## Iris 3.1.0 (released 2017-12-19)
...
...
theories/algebra/frac_auth.v
View file @
94cfebc2
...
...
@@ -24,9 +24,9 @@ Typeclasses Opaque frac_auth_auth frac_auth_frag.
Instance
:
Params
(@
frac_auth_auth
)
1
:
=
{}.
Instance
:
Params
(@
frac_auth_frag
)
2
:
=
{}.
Notation
"●
!
a"
:
=
(
frac_auth_auth
a
)
(
at
level
10
).
Notation
"◯
!{ q } a"
:
=
(
frac_auth_frag
q
a
)
(
at
level
10
,
format
"◯!
{ q } a"
).
Notation
"◯
!
a"
:
=
(
frac_auth_frag
1
a
)
(
at
level
10
).
Notation
"●
F
a"
:
=
(
frac_auth_auth
a
)
(
at
level
10
).
Notation
"◯
F{ q } a"
:
=
(
frac_auth_frag
q
a
)
(
at
level
10
,
format
"◯F
{ q } a"
).
Notation
"◯
F
a"
:
=
(
frac_auth_frag
1
a
)
(
at
level
10
).
Section
frac_auth
.
Context
{
A
:
cmraT
}.
...
...
@@ -41,79 +41,79 @@ Section frac_auth.
Global
Instance
frac_auth_frag_proper
q
:
Proper
((
≡
)
==>
(
≡
))
(@
frac_auth_frag
A
q
).
Proof
.
solve_proper
.
Qed
.
Global
Instance
frac_auth_auth_discrete
a
:
Discrete
a
→
Discrete
(
●
!
a
).
Global
Instance
frac_auth_auth_discrete
a
:
Discrete
a
→
Discrete
(
●
F
a
).
Proof
.
intros
;
apply
auth_auth_discrete
;
[
apply
Some_discrete
|]
;
apply
_
.
Qed
.
Global
Instance
frac_auth_frag_discrete
q
a
:
Discrete
a
→
Discrete
(
◯
!
{
q
}
a
).
Global
Instance
frac_auth_frag_discrete
q
a
:
Discrete
a
→
Discrete
(
◯
F
{
q
}
a
).
Proof
.
intros
;
apply
auth_frag_discrete
,
Some_discrete
;
apply
_
.
Qed
.
Lemma
frac_auth_validN
n
a
:
✓
{
n
}
a
→
✓
{
n
}
(
●
!
a
⋅
◯
!
a
).
Lemma
frac_auth_validN
n
a
:
✓
{
n
}
a
→
✓
{
n
}
(
●
F
a
⋅
◯
F
a
).
Proof
.
by
rewrite
auth_both_validN
.
Qed
.
Lemma
frac_auth_valid
a
:
✓
a
→
✓
(
●
!
a
⋅
◯
!
a
).
Lemma
frac_auth_valid
a
:
✓
a
→
✓
(
●
F
a
⋅
◯
F
a
).
Proof
.
intros
.
by
apply
auth_both_valid_2
.
Qed
.
Lemma
frac_auth_agreeN
n
a
b
:
✓
{
n
}
(
●
!
a
⋅
◯
!
b
)
→
a
≡
{
n
}
≡
b
.
Lemma
frac_auth_agreeN
n
a
b
:
✓
{
n
}
(
●
F
a
⋅
◯
F
b
)
→
a
≡
{
n
}
≡
b
.
Proof
.
rewrite
auth_both_validN
/=
=>
-[
Hincl
Hvalid
].
by
move
:
Hincl
=>
/
Some_includedN_exclusive
/(
_
Hvalid
)
[??].
Qed
.
Lemma
frac_auth_agree
a
b
:
✓
(
●
!
a
⋅
◯
!
b
)
→
a
≡
b
.
Lemma
frac_auth_agree
a
b
:
✓
(
●
F
a
⋅
◯
F
b
)
→
a
≡
b
.
Proof
.
intros
.
apply
equiv_dist
=>
n
.
by
apply
frac_auth_agreeN
,
cmra_valid_validN
.
Qed
.
Lemma
frac_auth_agreeL
`
{!
LeibnizEquiv
A
}
a
b
:
✓
(
●
!
a
⋅
◯
!
b
)
→
a
=
b
.
Lemma
frac_auth_agreeL
`
{!
LeibnizEquiv
A
}
a
b
:
✓
(
●
F
a
⋅
◯
F
b
)
→
a
=
b
.
Proof
.
intros
.
by
apply
leibniz_equiv
,
frac_auth_agree
.
Qed
.
Lemma
frac_auth_includedN
n
q
a
b
:
✓
{
n
}
(
●
!
a
⋅
◯
!
{
q
}
b
)
→
Some
b
≼
{
n
}
Some
a
.
Lemma
frac_auth_includedN
n
q
a
b
:
✓
{
n
}
(
●
F
a
⋅
◯
F
{
q
}
b
)
→
Some
b
≼
{
n
}
Some
a
.
Proof
.
by
rewrite
auth_both_validN
/=
=>
-[/
Some_pair_includedN
[
_
?]
_
].
Qed
.
Lemma
frac_auth_included
`
{
CmraDiscrete
A
}
q
a
b
:
✓
(
●
!
a
⋅
◯
!
{
q
}
b
)
→
Some
b
≼
Some
a
.
✓
(
●
F
a
⋅
◯
F
{
q
}
b
)
→
Some
b
≼
Some
a
.
Proof
.
by
rewrite
auth_both_valid
/=
=>
-[/
Some_pair_included
[
_
?]
_
].
Qed
.
Lemma
frac_auth_includedN_total
`
{
CmraTotal
A
}
n
q
a
b
:
✓
{
n
}
(
●
!
a
⋅
◯
!
{
q
}
b
)
→
b
≼
{
n
}
a
.
✓
{
n
}
(
●
F
a
⋅
◯
F
{
q
}
b
)
→
b
≼
{
n
}
a
.
Proof
.
intros
.
by
eapply
Some_includedN_total
,
frac_auth_includedN
.
Qed
.
Lemma
frac_auth_included_total
`
{
CmraDiscrete
A
,
CmraTotal
A
}
q
a
b
:
✓
(
●
!
a
⋅
◯
!
{
q
}
b
)
→
b
≼
a
.
✓
(
●
F
a
⋅
◯
F
{
q
}
b
)
→
b
≼
a
.
Proof
.
intros
.
by
eapply
Some_included_total
,
frac_auth_included
.
Qed
.
Lemma
frac_auth_auth_validN
n
a
:
✓
{
n
}
(
●
!
a
)
↔
✓
{
n
}
a
.
Lemma
frac_auth_auth_validN
n
a
:
✓
{
n
}
(
●
F
a
)
↔
✓
{
n
}
a
.
Proof
.
rewrite
auth_auth_frac_validN
Some_validN
.
split
.
by
intros
[?[]].
intros
.
by
split
.
Qed
.
Lemma
frac_auth_auth_valid
a
:
✓
(
●
!
a
)
↔
✓
a
.
Lemma
frac_auth_auth_valid
a
:
✓
(
●
F
a
)
↔
✓
a
.
Proof
.
rewrite
!
cmra_valid_validN
.
by
setoid_rewrite
frac_auth_auth_validN
.
Qed
.
Lemma
frac_auth_frag_validN
n
q
a
:
✓
{
n
}
(
◯
!
{
q
}
a
)
↔
✓
{
n
}
q
∧
✓
{
n
}
a
.
Lemma
frac_auth_frag_validN
n
q
a
:
✓
{
n
}
(
◯
F
{
q
}
a
)
↔
✓
{
n
}
q
∧
✓
{
n
}
a
.
Proof
.
done
.
Qed
.
Lemma
frac_auth_frag_valid
q
a
:
✓
(
◯
!
{
q
}
a
)
↔
✓
q
∧
✓
a
.
Lemma
frac_auth_frag_valid
q
a
:
✓
(
◯
F
{
q
}
a
)
↔
✓
q
∧
✓
a
.
Proof
.
done
.
Qed
.
Lemma
frac_auth_frag_op
q1
q2
a1
a2
:
◯
!{
q1
+
q2
}
(
a1
⋅
a2
)
≡
◯
!{
q1
}
a1
⋅
◯
!
{
q2
}
a2
.
Lemma
frac_auth_frag_op
q1
q2
a1
a2
:
◯
F
{
q1
+
q2
}
(
a1
⋅
a2
)
≡
◯
F
{
q1
}
a1
⋅
◯
F
{
q2
}
a2
.
Proof
.
done
.
Qed
.
Lemma
frac_auth_frag_validN_op_1_l
n
q
a
b
:
✓
{
n
}
(
◯
!{
1
}
a
⋅
◯
!
{
q
}
b
)
→
False
.
Lemma
frac_auth_frag_validN_op_1_l
n
q
a
b
:
✓
{
n
}
(
◯
F
{
1
}
a
⋅
◯
F
{
q
}
b
)
→
False
.
Proof
.
rewrite
-
frac_auth_frag_op
frac_auth_frag_validN
=>
-[/
exclusiveN_l
[]].
Qed
.
Lemma
frac_auth_frag_valid_op_1_l
q
a
b
:
✓
(
◯
!{
1
}
a
⋅
◯
!
{
q
}
b
)
→
False
.
Lemma
frac_auth_frag_valid_op_1_l
q
a
b
:
✓
(
◯
F
{
1
}
a
⋅
◯
F
{
q
}
b
)
→
False
.
Proof
.
rewrite
-
frac_auth_frag_op
frac_auth_frag_valid
=>
-[/
exclusive_l
[]].
Qed
.
Global
Instance
is_op_frac_auth
(
q
q1
q2
:
frac
)
(
a
a1
a2
:
A
)
:
IsOp
q
q1
q2
→
IsOp
a
a1
a2
→
IsOp'
(
◯
!{
q
}
a
)
(
◯
!{
q1
}
a1
)
(
◯
!
{
q2
}
a2
).
IsOp
q
q1
q2
→
IsOp
a
a1
a2
→
IsOp'
(
◯
F
{
q
}
a
)
(
◯
F
{
q1
}
a1
)
(
◯
F
{
q2
}
a2
).
Proof
.
by
rewrite
/
IsOp'
/
IsOp
=>
/
leibniz_equiv_iff
->
->.
Qed
.
Global
Instance
is_op_frac_auth_core_id
(
q
q1
q2
:
frac
)
(
a
:
A
)
:
CoreId
a
→
IsOp
q
q1
q2
→
IsOp'
(
◯
!{
q
}
a
)
(
◯
!{
q1
}
a
)
(
◯
!
{
q2
}
a
).
CoreId
a
→
IsOp
q
q1
q2
→
IsOp'
(
◯
F
{
q
}
a
)
(
◯
F
{
q1
}
a
)
(
◯
F
{
q2
}
a
).
Proof
.
rewrite
/
IsOp'
/
IsOp
=>
?
/
leibniz_equiv_iff
->.
by
rewrite
-
frac_auth_frag_op
-
core_id_dup
.
Qed
.
Lemma
frac_auth_update
q
a
b
a'
b'
:
(
a
,
b
)
~l
~>
(
a'
,
b'
)
→
●
!
a
⋅
◯
!{
q
}
b
~~>
●
!
a'
⋅
◯
!
{
q
}
b'
.
(
a
,
b
)
~l
~>
(
a'
,
b'
)
→
●
F
a
⋅
◯
F
{
q
}
b
~~>
●
F
a'
⋅
◯
F
{
q
}
b'
.
Proof
.
intros
.
by
apply
auth_update
,
option_local_update
,
prod_local_update_2
.
Qed
.
Lemma
frac_auth_update_1
a
b
a'
:
✓
a'
→
●
!
a
⋅
◯
!
b
~~>
●
!
a'
⋅
◯
!
a'
.
Lemma
frac_auth_update_1
a
b
a'
:
✓
a'
→
●
F
a
⋅
◯
F
b
~~>
●
F
a'
⋅
◯
F
a'
.
Proof
.
intros
.
by
apply
auth_update
,
option_local_update
,
exclusive_local_update
.
Qed
.
...
...
theories/heap_lang/lib/counter.v
View file @
94cfebc2
...
...
@@ -97,13 +97,13 @@ Section contrib_spec.
Context
`
{!
heapG
Σ
,
!
ccounterG
Σ
}
(
N
:
namespace
).
Definition
ccounter_inv
(
γ
:
gname
)
(
l
:
loc
)
:
iProp
Σ
:
=
(
∃
n
,
own
γ
(
●
!
n
)
∗
l
↦
#
n
)%
I
.
(
∃
n
,
own
γ
(
●
F
n
)
∗
l
↦
#
n
)%
I
.
Definition
ccounter_ctx
(
γ
:
gname
)
(
l
:
loc
)
:
iProp
Σ
:
=
inv
N
(
ccounter_inv
γ
l
).
Definition
ccounter
(
γ
:
gname
)
(
q
:
frac
)
(
n
:
nat
)
:
iProp
Σ
:
=
own
γ
(
◯
!
{
q
}
n
).
own
γ
(
◯
F
{
q
}
n
).
(** The main proofs. *)
Lemma
ccounter_op
γ
q1
q2
n1
n2
:
...
...
@@ -115,7 +115,7 @@ Section contrib_spec.
{{{
γ
l
,
RET
#
l
;
ccounter_ctx
γ
l
∗
ccounter
γ
1
0
}}}.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
rewrite
-
wp_fupd
/
newcounter
/=.
wp_lam
.
wp_alloc
l
as
"Hl"
.
iMod
(
own_alloc
(
●
!
O
%
nat
⋅
◯
!
0
%
nat
))
as
(
γ
)
"[Hγ Hγ']"
;
iMod
(
own_alloc
(
●
F
O
%
nat
⋅
◯
F
0
%
nat
))
as
(
γ
)
"[Hγ Hγ']"
;
first
by
apply
auth_both_valid
.
iMod
(
inv_alloc
N
_
(
ccounter_inv
γ
l
)
with
"[Hl Hγ]"
).
{
iNext
.
iExists
0
%
nat
.
by
iFrame
.
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment