Commit 92eaf4f9 authored by Robbert Krebbers's avatar Robbert Krebbers

Prove that `is_lock` is contractive.

parent ae0b5798
......@@ -13,7 +13,7 @@ Structure lock Σ `{!heapG Σ} := Lock {
is_lock (N: namespace) (γ: name) (lock: val) (R: iProp Σ) : iProp Σ;
locked (γ: name) : iProp Σ;
(* -- general properties -- *)
is_lock_ne N γ lk : NonExpansive (is_lock N γ lk);
is_lock_ne N γ lk : Contractive (is_lock N γ lk);
is_lock_persistent N γ lk R : Persistent (is_lock N γ lk R);
locked_timeless γ : Timeless (locked γ);
locked_exclusive γ : locked γ - locked γ - False;
......
......@@ -36,8 +36,8 @@ Section proof.
Global Instance lock_inv_ne γ l : NonExpansive (lock_inv γ l).
Proof. solve_proper. Qed.
Global Instance is_lock_ne γ l : NonExpansive (is_lock γ l).
Proof. solve_proper. Qed.
Global Instance is_lock_contractive γ l : Contractive (is_lock γ l).
Proof. solve_contractive. Qed.
(** The main proofs. *)
Global Instance is_lock_persistent γ l R : Persistent (is_lock γ l R).
......
......@@ -54,11 +54,10 @@ Section proof.
Definition locked (γ : gname) : iProp Σ := ( o, own γ ( (Excl' o, GSet )))%I.
Global Instance lock_inv_ne γ lo ln :
NonExpansive (lock_inv γ lo ln).
Proof. solve_proper. Qed.
Global Instance is_lock_ne γ lk : NonExpansive (is_lock γ lk).
Global Instance lock_inv_ne γ lo ln : NonExpansive (lock_inv γ lo ln).
Proof. solve_proper. Qed.
Global Instance is_lock_contractive γ lk : Contractive (is_lock γ lk).
Proof. solve_contractive. Qed.
Global Instance is_lock_persistent γ lk R : Persistent (is_lock γ lk R).
Proof. apply _. Qed.
Global Instance locked_timeless γ : Timeless (locked γ).
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment