Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Jonas Kastberg
iris
Commits
919c0bde
Commit
919c0bde
authored
Nov 02, 2017
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Prove `except_0_forall` in both directions.
Thanks to Amin Timany for an initial version of the proof.
parent
777cf634
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
12 additions
and
2 deletions
+12
-2
theories/base_logic/derived.v
theories/base_logic/derived.v
+12
-2
No files found.
theories/base_logic/derived.v
View file @
919c0bde
...
...
@@ -827,8 +827,18 @@ Proof.
by
rewrite
-!
or_intro_l
-
persistently_pure
-
persistently_later
-
persistently_sep_dup
.
-
rewrite
sep_or_r
sep_elim_l
sep_or_l
;
auto
.
Qed
.
Lemma
except_0_forall
{
A
}
(
Φ
:
A
→
uPred
M
)
:
◇
(
∀
a
,
Φ
a
)
⊢
∀
a
,
◇
Φ
a
.
Proof
.
apply
forall_intro
=>
a
.
by
rewrite
(
forall_elim
a
).
Qed
.
Lemma
except_0_forall
{
A
}
(
Φ
:
A
→
uPred
M
)
:
◇
(
∀
a
,
Φ
a
)
⊣
⊢
∀
a
,
◇
Φ
a
.
Proof
.
apply
(
anti_symm
_
).
{
apply
forall_intro
=>
a
.
by
rewrite
(
forall_elim
a
).
}
trans
(
▷
(
∀
a
:
A
,
Φ
a
)
∧
(
∀
a
:
A
,
◇
Φ
a
))%
I
.
{
apply
and_intro
,
reflexivity
.
rewrite
later_forall
.
apply
forall_mono
=>
a
.
apply
or_elim
;
auto
using
later_intro
.
}
rewrite
later_false_excluded_middle
and_or_r
.
apply
or_elim
.
{
rewrite
and_elim_l
.
apply
or_intro_l
.
}
apply
or_intro_r'
,
forall_intro
=>
a
.
rewrite
!(
forall_elim
a
).
by
rewrite
/
uPred_except_0
and_or_l
impl_elim_l
and_elim_r
idemp
.
Qed
.
Lemma
except_0_exist_2
{
A
}
(
Φ
:
A
→
uPred
M
)
:
(
∃
a
,
◇
Φ
a
)
⊢
◇
∃
a
,
Φ
a
.
Proof
.
apply
exist_elim
=>
a
.
by
rewrite
(
exist_intro
a
).
Qed
.
Lemma
except_0_exist
`
{
Inhabited
A
}
(
Φ
:
A
→
uPred
M
)
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment