Commit 8fd3233e by Ralf Jung

### tests/mosel_paper: show the two goals separately

parent f9435245
 ... ... @@ -10,7 +10,7 @@ --------------------------------------∗ ∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a 2 subgoals 1 subgoal PROP : bi A : Type ... ... @@ -23,13 +23,19 @@ --------------------------------------∗ ∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a subgoal 2 is: "HP" : P "H2" : Ψ x --------------------------------------∗ ∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a 1 subgoal PROP : bi A : Type P : PROP Φ, Ψ : A → PROP x : A ============================ "HP" : P "H2" : Ψ x --------------------------------------∗ ∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a 1 subgoal PROP : bi ... ...
 ... ... @@ -12,9 +12,9 @@ Lemma example_1 {PROP : bi} {A : Type} (P : PROP) (Φ Ψ : A → PROP) : P ∗ (∃ a, Φ a ∨ Ψ a) -∗ ∃ a, (P ∗ Φ a) ∨ (P ∗ Ψ a). Proof. iIntros "[HP H]". Show. iDestruct "H" as (x) "[H1|H2]". Show. - iExists x. iLeft. iSplitL "HP"; iAssumption. - iExists x. iRight. iSplitL "HP"; iAssumption. iDestruct "H" as (x) "[H1|H2]". - Show. iExists x. iLeft. iSplitL "HP"; iAssumption. - Show. iExists x. iRight. iSplitL "HP"; iAssumption. Qed. Lemma example {PROP : bi} {A : Type} (P : PROP) (Φ Ψ : A → PROP) : P ∗ (∃ a, Φ a ∨ Ψ a) -∗ ∃ a, (P ∗ Φ a) ∨ (P ∗ Ψ a). ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!