Commit 700caaac by Ralf Jung

### test proofmode output for long lines, and fix it

parent 4946e270
 ... ... @@ -19,6 +19,46 @@ --------------------------------------□ Q ∨ P 1 subgoal PROP : sbi P : PROP ============================ "HP" : (P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P) ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P --------------------------------------∗ P 1 subgoal PROP : sbi P : PROP ============================ _ : (P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P) ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P --------------------------------------∗ P 1 subgoal PROP : sbi P : PROP ============================ "HP" : TESTNOTATION {{ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P | P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P }} --------------------------------------∗ P 1 subgoal PROP : sbi P : PROP ============================ _ : TESTNOTATION {{ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P | P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P }} --------------------------------------∗ P 1 subgoal PROP : sbi ... ...
 ... ... @@ -37,6 +37,39 @@ Lemma demo_3 P1 P2 P3 : P1 ∗ P2 ∗ P3 -∗ P1 ∗ ▷ (P2 ∗ ∃ x, (P3 ∧ ⌜x = 0⌝) ∨ P3). Proof. iIntros "(\$ & \$ & \$)". iNext. by iExists 0. Qed. (* Test line breaking of long assumptions. *) Section linebreaks. Lemma print_long_line P : (P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P) ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P -∗ P. Proof. iIntros "HP". Show. Abort. Lemma print_long_line_anon P : (P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P) ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P -∗ P. Proof. iIntros "?". Show. Abort. (* This is specifically crafted such that not having the `hv` in the proofmode notation breaks the output. *) Local Notation "'TESTNOTATION' '{{' P '|' Q '}' '}'" := (P ∧ Q)%I (format "'TESTNOTATION' '{{' P '|' Q '}' '}'") : bi_scope. Lemma print_long_line P : TESTNOTATION {{ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P | P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P }} -∗ P. Proof. iIntros "HP". Show. Abort. Lemma print_long_line_anon P : TESTNOTATION {{ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P | P ∗ P ∗ P ∗ P ∗ P ∗ P ∗ P }} -∗ P. Proof. iIntros "?". Show. Abort. End linebreaks. Definition foo (P : PROP) := (P -∗ P)%I. Definition bar : PROP := (∀ P, foo P)%I. ... ...
 ... ... @@ -103,8 +103,7 @@ --------------------------------------□ "Hown1" : na_own t E1 "Hown2" : na_own t (E2 ∖ ↑N) "Hclose" : ▷ P ∗ na_own t (E2 ∖ ↑N) ={⊤}=∗ id (na_own t E2) "Hclose" : ▷ P ∗ na_own t (E2 ∖ ↑N) ={⊤}=∗ id (na_own t E2) --------------------------------------∗ |={⊤}=> na_own t E1 ∗ na_own t E2 ∗ ▷ P ... ...
 ... ... @@ -10,10 +10,10 @@ Arguments Esnoc {_} _%proof_scope _%string _%I. Notation "" := Enil (only printing) : proof_scope. Notation "Γ H : P" := (Esnoc Γ (INamed H) P) (at level 1, P at level 200, left associativity, format "Γ H : P '//'", only printing) : proof_scope. left associativity, format "Γ H : '[hv' P ']' '//'", only printing) : proof_scope. Notation "Γ '_' : P" := (Esnoc Γ (IAnon _) P) (at level 1, P at level 200, left associativity, format "Γ '_' : P '//'", only printing) : proof_scope. left associativity, format "Γ '_' : '[hv' P ']' '//'", only printing) : proof_scope. Notation "Γ '--------------------------------------' □ Δ '--------------------------------------' ∗ Q" := (envs_entails (Envs Γ Δ _) Q%I) ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!