### Rename fmap_Some_equiv' → fmap_Some_equiv_1.

```We typically use the _1 and _2 suffix to denote individual directions
of a lemmas that is a biimplication.```
parent 22fac635
 ... @@ -190,10 +190,10 @@ Proof. ... @@ -190,10 +190,10 @@ Proof. - intros ?%symmetry%equiv_None. done. - intros ?%symmetry%equiv_None. done. - intros (? & ? & ?). done. - intros (? & ? & ?). done. Qed. Qed. Lemma fmap_Some_equiv' {A B} `{Equiv B} `{!Equivalence ((≡) : relation B)} Lemma fmap_Some_equiv_1 {A B} `{Equiv B} `{!Equivalence ((≡) : relation B)} (f : A → B) mx y : (f : A → B) mx y : f <\$> mx ≡ Some y → ∃ x, mx = Some x ∧ y ≡ f x. f <\$> mx ≡ Some y → ∃ x, mx = Some x ∧ y ≡ f x. Proof. intros. apply fmap_Some_equiv. done. Qed. Proof. by rewrite fmap_Some_equiv. Qed. Lemma fmap_None {A B} (f : A → B) mx : f <\$> mx = None ↔ mx = None. Lemma fmap_None {A B} (f : A → B) mx : f <\$> mx = None ↔ mx = None. Proof. by destruct mx. Qed. Proof. by destruct mx. Qed. Lemma option_fmap_id {A} (mx : option A) : id <\$> mx = mx. Lemma option_fmap_id {A} (mx : option A) : id <\$> mx = mx. ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment