Commit 599c70e1 by Ralf Jung

### a little theory about limit preservation

parent a09a8247
 ... @@ -959,6 +959,21 @@ Qed. ... @@ -959,6 +959,21 @@ Qed. Class LimitPreserving `{!Cofe A} (P : A → Prop) : Prop := Class LimitPreserving `{!Cofe A} (P : A → Prop) : Prop := limit_preserving : ∀ c : chain A, (∀ n, P (c n)) → P (compl c). limit_preserving : ∀ c : chain A, (∀ n, P (c n)) → P (compl c). Section limit_preserving. Context {A : ofeT} `{!Cofe A}. (* These are not instances as they will never fire automatically... but they can still be helpful in proving things to be limit preserving. *) Lemma limit_preserving_and (P1 P2 : A → Prop) : LimitPreserving P1 → LimitPreserving P2 → LimitPreserving (λ x, P1 x ∧ P2 x). Proof. intros Hlim1 Hlim2 c Hc. split. - apply Hlim1, Hc. - apply Hlim2, Hc. Qed. End limit_preserving. Section sigma. Section sigma. Context {A : ofeT} {P : A → Prop}. Context {A : ofeT} {P : A → Prop}. ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment