Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Jonas Kastberg
iris
Commits
58e2394c
Commit
58e2394c
authored
May 23, 2018
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into gen_proofmode
parents
d8e9c860
11eacd8b
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
21 additions
and
10 deletions
+21
-10
theories/base_logic/lib/cancelable_invariants.v
theories/base_logic/lib/cancelable_invariants.v
+21
-10
No files found.
theories/base_logic/lib/cancelable_invariants.v
View file @
58e2394c
...
...
@@ -71,6 +71,21 @@ Section proofs.
iIntros
"!>"
.
iExists
P
.
iSplit
;
last
done
.
iIntros
"!# !>"
;
iSplit
;
auto
.
Qed
.
Lemma
cinv_open_strong
E
N
γ
p
P
:
↑
N
⊆
E
→
cinv
N
γ
P
-
∗
cinv_own
γ
p
={
E
,
E
∖↑
N
}=
∗
▷
P
∗
cinv_own
γ
p
∗
(
▷
P
∨
cinv_own
γ
1
={
E
∖↑
N
,
E
}=
∗
True
).
Proof
.
iIntros
(?)
"#Hinv Hγ"
.
iDestruct
"Hinv"
as
(
P'
)
"[#HP' Hinv]"
.
iInv
N
as
"[HP | >Hγ']"
"Hclose"
.
-
iIntros
"!> {$Hγ}"
.
iSplitL
"HP"
.
+
iNext
.
iApply
"HP'"
.
done
.
+
iIntros
"[HP|Hγ]"
.
*
iApply
"Hclose"
.
iLeft
.
iNext
.
by
iApply
"HP'"
.
*
iApply
"Hclose"
.
iRight
.
by
iNext
.
-
iDestruct
(
cinv_own_1_l
with
"Hγ' Hγ"
)
as
%[].
Qed
.
Lemma
cinv_alloc
E
N
P
:
▷
P
={
E
}=
∗
∃
γ
,
cinv
N
γ
P
∗
cinv_own
γ
1
.
Proof
.
iIntros
"HP"
.
iMod
(
cinv_alloc_strong
∅
E
N
)
as
(
γ
_
)
"[Hγ Halloc]"
.
...
...
@@ -79,22 +94,18 @@ Section proofs.
Lemma
cinv_cancel
E
N
γ
P
:
↑
N
⊆
E
→
cinv
N
γ
P
-
∗
cinv_own
γ
1
={
E
}=
∗
▷
P
.
Proof
.
iIntros
(?)
"#Hinv Hγ"
.
iDestruct
"Hinv"
as
(
P'
)
"[#HP' Hinv]"
.
iInv
N
as
"[HP|>Hγ']"
.
-
iModIntro
.
iFrame
"Hγ"
.
iModIntro
.
iApply
"HP'"
.
done
.
-
iDestruct
(
cinv_own_1_l
with
"Hγ Hγ'"
)
as
%[].
iIntros
(?)
"#Hinv Hγ"
.
iMod
(
cinv_open_strong
with
"Hinv Hγ"
)
as
"($ & Hγ & H)"
;
first
done
.
iApply
"H"
.
by
iRight
.
Qed
.
Lemma
cinv_open
E
N
γ
p
P
:
↑
N
⊆
E
→
cinv
N
γ
P
-
∗
cinv_own
γ
p
={
E
,
E
∖↑
N
}=
∗
▷
P
∗
cinv_own
γ
p
∗
(
▷
P
={
E
∖↑
N
,
E
}=
∗
True
).
Proof
.
iIntros
(?)
"#Hinv Hγ"
.
iDestruct
"Hinv"
as
(
P'
)
"[#HP' Hinv]"
.
iInv
N
as
"[HP | >Hγ']"
"Hclose"
.
-
iIntros
"!> {$Hγ}"
.
iSplitL
"HP"
.
+
iNext
.
iApply
"HP'"
.
done
.
+
iIntros
"HP"
.
iApply
"Hclose"
.
iLeft
.
iNext
.
by
iApply
"HP'"
.
-
iDestruct
(
cinv_own_1_l
with
"Hγ' Hγ"
)
as
%[].
iIntros
(?)
"#Hinv Hγ"
.
iMod
(
cinv_open_strong
with
"Hinv Hγ"
)
as
"($ & $ & H)"
;
first
done
.
iIntros
"!> HP"
.
iApply
"H"
;
auto
.
Qed
.
Global
Instance
into_inv_cinv
N
γ
P
:
IntoInv
(
cinv
N
γ
P
)
N
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment