Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Jonas Kastberg
iris
Commits
471b2121
Commit
471b2121
authored
Jan 21, 2017
by
David Swasey
Committed by
Ralf Jung
Feb 11, 2017
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Make it possible to apply the observational view shift lemmas.
parent
ab23831f
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
5 additions
and
5 deletions
+5
-5
theories/program_logic/adequacy.v
theories/program_logic/adequacy.v
+2
-2
theories/program_logic/ownp.v
theories/program_logic/ownp.v
+3
-3
No files found.
theories/program_logic/adequacy.v
View file @
471b2121
...
...
@@ -187,11 +187,11 @@ Proof.
iFrame
.
by
iApply
big_sepL_nil
.
Qed
.
Theorem
wp_invariance
Σ
Λ
`
{
invPreG
Σ
}
e
σ
1
t2
σ
2
φ
Φ
:
Theorem
wp_invariance
Σ
Λ
`
{
invPreG
Σ
}
e
σ
1
t2
σ
2
φ
:
(
∀
`
{
Hinv
:
invG
Σ
},
True
={
⊤
}=
∗
∃
stateI
:
state
Λ
→
iProp
Σ
,
let
_
:
irisG
Λ
Σ
:
=
IrisG
_
_
Hinv
stateI
in
stateI
σ
1
∗
WP
e
{{
Φ
}}
∗
(
stateI
σ
2
={
⊤
,
∅
}=
∗
⌜φ⌝
))
→
stateI
σ
1
∗
WP
e
{{
_
,
True
}}
∗
(
stateI
σ
2
={
⊤
,
∅
}=
∗
⌜φ⌝
))
→
rtc
step
([
e
],
σ
1
)
(
t2
,
σ
2
)
→
φ
.
Proof
.
...
...
theories/program_logic/ownp.v
View file @
471b2121
...
...
@@ -50,13 +50,13 @@ Proof.
iApply
(
Hwp
(
OwnPG
_
_
_
_
γσ
)).
by
rewrite
/
ownP
.
Qed
.
Theorem
ownP_invariance
Σ
`
{
ownPPreG
Λ
Σ
}
e
σ
1
t2
σ
2
φ
Φ
:
Theorem
ownP_invariance
Σ
`
{
ownPPreG
Λ
Σ
}
e
σ
1
t2
σ
2
φ
:
(
∀
`
{
ownPG
Λ
Σ
},
ownP
σ
1
={
⊤
}=
∗
WP
e
{{
Φ
}}
∗
|={
⊤
,
∅
}=>
∃
σ
'
,
ownP
σ
'
∧
⌜φ
σ
'
⌝
)
→
ownP
σ
1
={
⊤
}=
∗
WP
e
{{
_
,
True
}}
∗
|={
⊤
,
∅
}=>
∃
σ
'
,
ownP
σ
'
∧
⌜φ
σ
'
⌝
)
→
rtc
step
([
e
],
σ
1
)
(
t2
,
σ
2
)
→
φ
σ
2
.
Proof
.
intros
Hwp
Hsteps
.
eapply
(
wp_invariance
Σ
Λ
e
σ
1
t2
σ
2
_
Φ
)=>
//.
intros
Hwp
Hsteps
.
eapply
(
wp_invariance
Σ
Λ
e
σ
1
t2
σ
2
_
)=>
//.
iIntros
(?)
""
.
iMod
(
own_alloc
(
●
(
Excl'
(
σ
1
:
leibnizC
_
))
⋅
◯
(
Excl'
σ
1
)))
as
(
γσ
)
"[Hσ Hσf]"
;
first
done
.
iExists
(
λ
σ
,
own
γσ
(
●
(
Excl'
(
σ
:
leibnizC
_
)))).
iFrame
"Hσ"
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment