Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Jonas Kastberg
iris
Commits
2891ccae
Commit
2891ccae
authored
Mar 09, 2017
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
generalize lifting lemmas: better support view shifts that take a step
parent
5874f41e
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
46 additions
and
28 deletions
+46
-28
theories/heap_lang/lifting.v
theories/heap_lang/lifting.v
+10
-10
theories/program_logic/ectx_lifting.v
theories/program_logic/ectx_lifting.v
+21
-9
theories/program_logic/lifting.v
theories/program_logic/lifting.v
+15
-9
No files found.
theories/heap_lang/lifting.v
View file @
2891ccae
...
...
@@ -76,7 +76,7 @@ Lemma wp_fork E e Φ :
▷
Φ
(
LitV
LitUnit
)
∗
▷
WP
e
{{
_
,
True
}}
⊢
WP
Fork
e
@
E
{{
Φ
}}.
Proof
.
rewrite
-(
wp_lift_pure_det_head_step
(
Fork
e
)
(
Lit
LitUnit
)
[
e
])
//=
;
eauto
.
-
by
rewrite
later_sep
-(
wp_value
_
_
(
Lit
_
))
//
big_sepL_singleton
.
-
by
rewrite
-
step_fupd_intro
//
later_sep
-(
wp_value
_
_
(
Lit
_
))
//
big_sepL_singleton
.
-
intros
;
inv_head_step
;
eauto
.
Qed
.
...
...
@@ -86,7 +86,7 @@ Lemma wp_rec E f x erec e1 e2 Φ :
Closed
(
f
:
b
:
x
:
b
:
[])
erec
→
▷
WP
subst'
x
e2
(
subst'
f
e1
erec
)
@
E
{{
Φ
}}
⊢
WP
App
e1
e2
@
E
{{
Φ
}}.
Proof
.
intros
->
[
v2
?]
?.
rewrite
-(
wp_lift_pure_det_head_step_no_fork
(
App
_
_
)
intros
->
[
v2
?]
?.
rewrite
-(
wp_lift_pure_det_head_step_no_fork
'
(
App
_
_
)
(
subst'
x
e2
(
subst'
f
(
Rec
f
x
erec
)
erec
)))
;
eauto
.
intros
;
inv_head_step
;
eauto
.
Qed
.
...
...
@@ -96,7 +96,7 @@ Lemma wp_un_op E op e v v' Φ :
un_op_eval
op
v
=
Some
v'
→
▷
Φ
v'
⊢
WP
UnOp
op
e
@
E
{{
Φ
}}.
Proof
.
intros
.
rewrite
-(
wp_lift_pure_det_head_step_no_fork
(
UnOp
op
_
)
(
of_val
v'
))
intros
.
rewrite
-(
wp_lift_pure_det_head_step_no_fork
'
(
UnOp
op
_
)
(
of_val
v'
))
-
?wp_value'
;
eauto
.
intros
;
inv_head_step
;
eauto
.
Qed
.
...
...
@@ -106,7 +106,7 @@ Lemma wp_bin_op E op e1 e2 v1 v2 v' Φ :
bin_op_eval
op
v1
v2
=
Some
v'
→
▷
(
Φ
v'
)
⊢
WP
BinOp
op
e1
e2
@
E
{{
Φ
}}.
Proof
.
intros
.
rewrite
-(
wp_lift_pure_det_head_step_no_fork
(
BinOp
op
_
_
)
(
of_val
v'
))
intros
.
rewrite
-(
wp_lift_pure_det_head_step_no_fork
'
(
BinOp
op
_
_
)
(
of_val
v'
))
-
?wp_value'
;
eauto
.
intros
;
inv_head_step
;
eauto
.
Qed
.
...
...
@@ -114,14 +114,14 @@ Qed.
Lemma
wp_if_true
E
e1
e2
Φ
:
▷
WP
e1
@
E
{{
Φ
}}
⊢
WP
If
(
Lit
(
LitBool
true
))
e1
e2
@
E
{{
Φ
}}.
Proof
.
apply
wp_lift_pure_det_head_step_no_fork
;
eauto
.
apply
wp_lift_pure_det_head_step_no_fork
'
;
eauto
.
intros
;
inv_head_step
;
eauto
.
Qed
.
Lemma
wp_if_false
E
e1
e2
Φ
:
▷
WP
e2
@
E
{{
Φ
}}
⊢
WP
If
(
Lit
(
LitBool
false
))
e1
e2
@
E
{{
Φ
}}.
Proof
.
apply
wp_lift_pure_det_head_step_no_fork
;
eauto
.
apply
wp_lift_pure_det_head_step_no_fork
'
;
eauto
.
intros
;
inv_head_step
;
eauto
.
Qed
.
...
...
@@ -130,7 +130,7 @@ Lemma wp_fst E e1 v1 e2 Φ :
▷
Φ
v1
⊢
WP
Fst
(
Pair
e1
e2
)
@
E
{{
Φ
}}.
Proof
.
intros
?
[
v2
?].
rewrite
-(
wp_lift_pure_det_head_step_no_fork
(
Fst
_
)
e1
)
-
?wp_value
;
eauto
.
rewrite
-(
wp_lift_pure_det_head_step_no_fork
'
(
Fst
_
)
e1
)
-
?wp_value
;
eauto
.
intros
;
inv_head_step
;
eauto
.
Qed
.
...
...
@@ -139,7 +139,7 @@ Lemma wp_snd E e1 e2 v2 Φ :
▷
Φ
v2
⊢
WP
Snd
(
Pair
e1
e2
)
@
E
{{
Φ
}}.
Proof
.
intros
[
v1
?]
?.
rewrite
-(
wp_lift_pure_det_head_step_no_fork
(
Snd
_
)
e2
)
-
?wp_value
;
eauto
.
rewrite
-(
wp_lift_pure_det_head_step_no_fork
'
(
Snd
_
)
e2
)
-
?wp_value
;
eauto
.
intros
;
inv_head_step
;
eauto
.
Qed
.
...
...
@@ -148,7 +148,7 @@ Lemma wp_case_inl E e0 e1 e2 Φ :
▷
WP
App
e1
e0
@
E
{{
Φ
}}
⊢
WP
Case
(
InjL
e0
)
e1
e2
@
E
{{
Φ
}}.
Proof
.
intros
[
v0
?].
rewrite
-(
wp_lift_pure_det_head_step_no_fork
(
Case
_
_
_
)
(
App
e1
e0
))
;
eauto
.
rewrite
-(
wp_lift_pure_det_head_step_no_fork
'
(
Case
_
_
_
)
(
App
e1
e0
))
;
eauto
.
intros
;
inv_head_step
;
eauto
.
Qed
.
...
...
@@ -157,7 +157,7 @@ Lemma wp_case_inr E e0 e1 e2 Φ :
▷
WP
App
e2
e0
@
E
{{
Φ
}}
⊢
WP
Case
(
InjR
e0
)
e1
e2
@
E
{{
Φ
}}.
Proof
.
intros
[
v0
?].
rewrite
-(
wp_lift_pure_det_head_step_no_fork
(
Case
_
_
_
)
(
App
e2
e0
))
;
eauto
.
rewrite
-(
wp_lift_pure_det_head_step_no_fork
'
(
Case
_
_
_
)
(
App
e2
e0
))
;
eauto
.
intros
;
inv_head_step
;
eauto
.
Qed
.
...
...
theories/program_logic/ectx_lifting.v
View file @
2891ccae
...
...
@@ -12,11 +12,11 @@ Implicit Types v : val.
Implicit
Types
e
:
expr
.
Hint
Resolve
head_prim_reducible
head_reducible_prim_step
.
Lemma
wp_ectx_bind
{
E
e
}
K
Φ
:
Lemma
wp_ectx_bind
{
E
Φ
}
K
e
:
WP
e
@
E
{{
v
,
WP
fill
K
(
of_val
v
)
@
E
{{
Φ
}}
}}
⊢
WP
fill
K
e
@
E
{{
Φ
}}.
Proof
.
apply
:
weakestpre
.
wp_bind
.
Qed
.
Lemma
wp_lift_head_step
E
Φ
e1
:
Lemma
wp_lift_head_step
{
E
Φ
}
e1
:
to_val
e1
=
None
→
(
∀
σ
1
,
state_interp
σ
1
={
E
,
∅
}=
∗
⌜
head_reducible
e1
σ
1
⌝
∗
...
...
@@ -30,14 +30,15 @@ Proof.
iApply
"H"
.
by
eauto
.
Qed
.
Lemma
wp_lift_pure_head_step
E
Φ
e1
:
Lemma
wp_lift_pure_head_step
{
E
E'
Φ
}
e1
:
(
∀
σ
1
,
head_reducible
e1
σ
1
)
→
(
∀
σ
1 e2
σ
2
efs
,
head_step
e1
σ
1 e2
σ
2
efs
→
σ
1
=
σ
2
)
→
(
▷
∀
e2
efs
σ
,
⌜
head_step
e1
σ
e2
σ
efs
⌝
→
(
|={
E
,
E'
}
▷
=>
∀
e2
efs
σ
,
⌜
head_step
e1
σ
e2
σ
efs
⌝
→
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_
,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}.
Proof
using
Hinh
.
iIntros
(??)
"H"
.
iApply
wp_lift_pure_step
;
eauto
.
iNext
.
iIntros
(??)
"H"
.
iApply
wp_lift_pure_step
;
eauto
.
iMod
"H"
as
"H"
.
iModIntro
.
iNext
.
iMod
"H"
as
"H"
.
iModIntro
.
iIntros
(????).
iApply
"H"
.
eauto
.
Qed
.
...
...
@@ -70,21 +71,32 @@ Proof.
by
iApply
big_sepL_nil
.
Qed
.
Lemma
wp_lift_pure_det_head_step
{
E
Φ
}
e1
e2
efs
:
Lemma
wp_lift_pure_det_head_step
{
E
E'
Φ
}
e1
e2
efs
:
(
∀
σ
1
,
head_reducible
e1
σ
1
)
→
(
∀
σ
1 e2
'
σ
2
efs'
,
head_step
e1
σ
1 e2
'
σ
2
efs'
→
σ
1
=
σ
2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
▷
(
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_
,
True
}})
(|={
E
,
E'
}
▷
=>
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_
,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}.
Proof
using
Hinh
.
eauto
using
wp_lift_pure_det_step
.
Qed
.
Lemma
wp_lift_pure_det_head_step_no_fork
{
E
Φ
}
e1
e2
:
Lemma
wp_lift_pure_det_head_step_no_fork
{
E
E'
Φ
}
e1
e2
:
to_val
e1
=
None
→
(
∀
σ
1
,
head_reducible
e1
σ
1
)
→
(
∀
σ
1 e2
'
σ
2
efs'
,
head_step
e1
σ
1 e2
'
σ
2
efs'
→
σ
1
=
σ
2
∧
e2
=
e2'
∧
[]
=
efs'
)
→
▷
WP
e2
@
E
{{
Φ
}}
⊢
WP
e1
@
E
{{
Φ
}}.
(|={
E
,
E'
}
▷
=>
WP
e2
@
E
{{
Φ
}})
⊢
WP
e1
@
E
{{
Φ
}}.
Proof
using
Hinh
.
intros
.
rewrite
-(
wp_lift_pure_det_step
e1
e2
[])
?big_sepL_nil
?right_id
;
eauto
.
Qed
.
Lemma
wp_lift_pure_det_head_step_no_fork'
{
E
Φ
}
e1
e2
:
to_val
e1
=
None
→
(
∀
σ
1
,
head_reducible
e1
σ
1
)
→
(
∀
σ
1 e2
'
σ
2
efs'
,
head_step
e1
σ
1 e2
'
σ
2
efs'
→
σ
1
=
σ
2
∧
e2
=
e2'
∧
[]
=
efs'
)
→
▷
WP
e2
@
E
{{
Φ
}}
⊢
WP
e1
@
E
{{
Φ
}}.
Proof
using
Hinh
.
intros
.
rewrite
-[(
WP
e1
@
_
{{
_
}})%
I
]
wp_lift_pure_det_head_step_no_fork
//.
rewrite
-
step_fupd_intro
//.
Qed
.
End
wp
.
theories/program_logic/lifting.v
View file @
2891ccae
...
...
@@ -21,21 +21,24 @@ Lemma wp_lift_step E Φ e1 :
Proof
.
by
rewrite
wp_unfold
/
wp_pre
=>
->.
Qed
.
(** Derived lifting lemmas. *)
Lemma
wp_lift_pure_step
`
{
Inhabited
(
state
Λ
)}
E
Φ
e1
:
Lemma
wp_lift_pure_step
`
{
Inhabited
(
state
Λ
)}
E
E'
Φ
e1
:
(
∀
σ
1
,
reducible
e1
σ
1
)
→
(
∀
σ
1 e2
σ
2
efs
,
prim_step
e1
σ
1 e2
σ
2
efs
→
σ
1
=
σ
2
)
→
(
▷
∀
e2
efs
σ
,
⌜
prim_step
e1
σ
e2
σ
efs
⌝
→
(
|={
E
,
E'
}
▷
=>
∀
e2
efs
σ
,
⌜
prim_step
e1
σ
e2
σ
efs
⌝
→
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_
,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}.
Proof
.
iIntros
(
Hsafe
Hstep
)
"H"
.
iApply
wp_lift_step
.
{
eapply
reducible_not_val
,
(
Hsafe
inhabitant
).
}
iIntros
(
σ
1
)
"Hσ"
.
iMod
(
fupd_intro_mask'
E
∅
)
as
"Hclose"
;
first
set_solver
.
iModIntro
.
iSplit
;
[
done
|]
;
iNext
;
iIntros
(
e2
σ
2
efs
?).
iIntros
(
σ
1
)
"Hσ"
.
iMod
"H"
as
"H"
.
iMod
fupd_intro_mask'
as
"Hclose"
;
last
iModIntro
;
first
set_solver
.
iSplit
;
[
done
|]
;
iNext
;
iIntros
(
e2
σ
2
efs
?).
destruct
(
Hstep
σ
1 e2
σ
2
efs
)
;
auto
;
subst
.
iMod
"Hclose"
;
iModIntro
.
iFrame
"Hσ
"
.
iApply
"H"
;
auto
.
iMod
"Hclose"
as
"_"
.
iFrame
"Hσ"
.
iMod
"H"
as
"H
"
.
iApply
"H"
;
auto
.
Qed
.
(* Atomic steps don't need any mask-changing business here, one can
use the generic lemmas here. *)
Lemma
wp_lift_atomic_step
{
E
Φ
}
e1
:
to_val
e1
=
None
→
(
∀
σ
1
,
state_interp
σ
1
={
E
}=
∗
...
...
@@ -54,13 +57,16 @@ Proof.
by
iApply
wp_value
.
Qed
.
Lemma
wp_lift_pure_det_step
`
{
Inhabited
(
state
Λ
)}
{
E
Φ
}
e1
e2
efs
:
Lemma
wp_lift_pure_det_step
`
{
Inhabited
(
state
Λ
)}
{
E
E'
Φ
}
e1
e2
efs
:
(
∀
σ
1
,
reducible
e1
σ
1
)
→
(
∀
σ
1 e2
'
σ
2
efs'
,
prim_step
e1
σ
1 e2
'
σ
2
efs'
→
σ
1
=
σ
2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
▷
(
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_
,
True
}})
(|={
E
,
E'
}
▷
=>
WP
e2
@
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
{{
_
,
True
}})
⊢
WP
e1
@
E
{{
Φ
}}.
Proof
.
iIntros
(?
Hpuredet
)
"?"
.
iApply
(
wp_lift_pure_step
E
)
;
try
done
.
by
intros
;
eapply
Hpuredet
.
iNext
.
by
iIntros
(
e'
efs'
σ
(
_
&->&->)%
Hpuredet
).
iIntros
(?
Hpuredet
)
"H"
.
iApply
(
wp_lift_pure_step
E
)
;
try
done
.
{
by
intros
;
eapply
Hpuredet
.
}
(* TODO: Can we make this nicer? iNext for fupd, for example, could help. *)
iMod
"H"
as
"H"
.
iModIntro
.
iNext
.
iMod
"H"
as
"H"
.
iModIntro
.
by
iIntros
(
e'
efs'
σ
(
_
&->&->)%
Hpuredet
).
Qed
.
End
lifting
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment