Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Jonas Kastberg
iris
Commits
1b6cfe1a
Commit
1b6cfe1a
authored
Jun 13, 2019
by
Amin Timany
Committed by
Ralf Jung
Jun 13, 2019
Browse files
Add the lazy_coin example
parent
5bdb226b
Changes
4
Hide whitespace changes
Inline
Side-by-side
_CoqProject
View file @
1b6cfe1a
...
...
@@ -110,7 +110,8 @@ theories/heap_lang/lib/assert.v
theories/heap_lang/lib/lock.v
theories/heap_lang/lib/spin_lock.v
theories/heap_lang/lib/ticket_lock.v
theories/heap_lang/lib/coin_flip.v
theories/heap_lang/lib/nondet_bool.v
theories/heap_lang/lib/lazy_coin.v
theories/heap_lang/lib/counter.v
theories/heap_lang/lib/atomic_heap.v
theories/heap_lang/lib/increment.v
...
...
theories/heap_lang/lib/coin_flip.v
deleted
100644 → 0
View file @
5bdb226b
From
iris
.
base_logic
.
lib
Require
Export
invariants
.
From
iris
.
program_logic
Require
Export
atomic
.
From
iris
.
proofmode
Require
Import
tactics
.
From
iris
.
heap_lang
Require
Import
proofmode
notation
.
Set
Default
Proof
Using
"Type"
.
(** Nondeterminism and Speculation:
Implementing "Late choice versus early choice" example from
Logical Relations for Fine-Grained Concurrency by Turon et al. (POPL'13) *)
Definition
rand
:
val
:
=
λ
:
"_"
,
let
:
"y"
:
=
ref
#
false
in
Fork
(
"y"
<-
#
true
)
;;
!
"y"
.
Definition
earlyChoice
:
val
:
=
λ
:
"x"
,
let
:
"r"
:
=
rand
#()
in
"x"
<-
#
0
;;
"r"
.
Definition
lateChoice
:
val
:
=
λ
:
"x"
,
let
:
"p"
:
=
NewProph
in
"x"
<-
#
0
;;
let
:
"r"
:
=
rand
#()
in
resolve_proph
:
"p"
to
:
"r"
;;
"r"
.
Section
coinflip
.
Context
`
{!
heapG
Σ
}.
Local
Definition
N
:
=
nroot
.@
"coin"
.
Lemma
rand_spec
:
{{{
True
}}}
rand
#()
{{{
(
b
:
bool
),
RET
#
b
;
True
}}}.
Proof
.
iIntros
(
Φ
)
"_ HP"
.
wp_lam
.
wp_alloc
l
as
"Hl"
.
iMod
(
inv_alloc
N
_
(
∃
(
b
:
bool
),
l
↦
#
b
)%
I
with
"[Hl]"
)
as
"#Hinv"
;
first
by
eauto
.
wp_apply
wp_fork
.
-
iInv
N
as
(
b
)
">Hl"
.
wp_store
.
iModIntro
.
iSplitL
;
eauto
.
-
wp_pures
.
iInv
N
as
(
b
)
">Hl"
.
wp_load
.
iModIntro
.
iSplitL
"Hl"
;
first
by
eauto
.
iApply
"HP"
.
done
.
Qed
.
Lemma
earlyChoice_spec
(
x
:
loc
)
:
<<<
x
↦
-
>>>
earlyChoice
#
x
@
⊤
<<<
∃
(
b
:
bool
),
x
↦
#
0
,
RET
#
b
>>>.
Proof
.
iIntros
(
Φ
)
"AU"
.
wp_lam
.
wp_apply
rand_spec
;
first
done
.
iIntros
(
b
)
"_"
.
wp_let
.
wp_bind
(
_
<-
_
)%
E
.
iMod
"AU"
as
"[Hl [_ Hclose]]"
.
iDestruct
"Hl"
as
(
v
)
"Hl"
.
wp_store
.
iMod
(
"Hclose"
with
"[Hl]"
)
as
"HΦ"
;
first
by
eauto
.
iModIntro
.
wp_seq
.
done
.
Qed
.
Definition
extract_bool
(
l
:
list
(
val
*
val
))
:
bool
:
=
match
l
with
|
(
_
,
LitV
(
LitBool
b
))
::
_
=>
b
|
_
=>
true
end
.
Lemma
lateChoice_spec
(
x
:
loc
)
:
<<<
x
↦
-
>>>
lateChoice
#
x
@
⊤
<<<
∃
(
b
:
bool
),
x
↦
#
0
,
RET
#
b
>>>.
Proof
.
iIntros
(
Φ
)
"AU"
.
wp_lam
.
wp_apply
wp_new_proph
;
first
done
.
iIntros
(
v
p
)
"Hp"
.
wp_let
.
wp_bind
(
_
<-
_
)%
E
.
iMod
"AU"
as
"[Hl [_ Hclose]]"
.
iDestruct
"Hl"
as
(
v'
)
"Hl"
.
wp_store
.
iMod
(
"Hclose"
$!
(
extract_bool
v
)
with
"[Hl]"
)
as
"HΦ"
;
first
by
eauto
.
iModIntro
.
wp_apply
rand_spec
;
try
done
.
iIntros
(
b'
)
"_"
.
wp_apply
(
wp_resolve_proph
with
"Hp"
).
iIntros
(
vs
)
"[HEq _]"
.
iDestruct
"HEq"
as
"->"
.
wp_seq
.
done
.
Qed
.
End
coinflip
.
theories/heap_lang/lib/lazy_coin.v
0 → 100644
View file @
1b6cfe1a
From
iris
.
base_logic
Require
Export
invariants
.
From
iris
.
program_logic
Require
Export
weakestpre
.
From
iris
.
heap_lang
Require
Export
lang
proofmode
notation
.
From
iris
.
heap_lang
.
lib
Require
Export
nondet_bool
.
Definition
new_coin
:
val
:
=
λ
:
<>,
(
ref
NONE
,
NewProph
).
Definition
read_coin
:
val
:
=
λ
:
"cp"
,
let
:
"c"
:
=
Fst
"cp"
in
let
:
"p"
:
=
Snd
"cp"
in
match
:
!
"c"
with
NONE
=>
let
:
"r"
:
=
nondet_bool
#()
in
"c"
<-
SOME
"r"
;;
resolve_proph
:
"p"
to
:
"r"
;;
"r"
|
SOME
"b"
=>
"b"
end
.
Section
proof
.
Context
`
{!
heapG
Σ
}.
Definition
val_to_bool
(
v
:
val
)
:
bool
:
=
bool_decide
(
v
=
#
true
).
Definition
prophecy_to_bool
(
vs
:
list
(
val
*
val
))
:
bool
:
=
default
false
(
val_to_bool
∘
snd
<$>
head
vs
).
Lemma
prophecy_to_bool_of_bool
(
b
:
bool
)
v
vs
:
prophecy_to_bool
((
v
,
#
b
)
::
vs
)
=
b
.
Proof
.
by
destruct
b
.
Qed
.
Definition
coin
(
cp
:
val
)
(
b
:
bool
)
:
iProp
Σ
:
=
(
∃
(
c
:
loc
)
(
p
:
proph_id
)
(
vs
:
list
(
val
*
val
)),
⌜
cp
=
(#
c
,
#
p
)%
V
⌝
∗
proph
p
vs
∗
(
c
↦
SOMEV
#
b
∨
(
c
↦
NONEV
∗
⌜
b
=
prophecy_to_bool
vs
⌝
)))%
I
.
Lemma
new_coin_spec
:
{{{
True
}}}
new_coin
#()
{{{
c
b
,
RET
c
;
coin
c
b
}}}.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_apply
wp_new_proph
;
first
done
.
iIntros
(
vs
p
)
"Hp"
.
wp_alloc
c
as
"Hc"
.
wp_pair
.
iApply
(
"HΦ"
$!
(#
c
,
#
p
)%
V
).
rewrite
/
coin
;
eauto
10
with
iFrame
.
Qed
.
Lemma
read_coin_spec
cp
b
:
{{{
coin
cp
b
}}}
read_coin
cp
{{{
RET
#
b
;
coin
cp
b
}}}.
Proof
.
iIntros
(
Φ
)
"Hc HΦ"
.
iDestruct
"Hc"
as
(
c
p
vs
->)
"[Hp [Hc | [Hc ->]]]"
.
-
wp_lam
.
wp_load
.
wp_match
.
iApply
"HΦ"
.
rewrite
/
coin
;
eauto
10
with
iFrame
.
-
wp_lam
.
wp_load
.
wp_match
.
wp_apply
nondet_bool_spec
;
first
done
.
iIntros
(
r
)
"_"
.
wp_let
.
wp_store
.
wp_apply
(
wp_resolve_proph
with
"[Hp]"
)
;
first
done
.
iIntros
(
ws
)
"[-> Hws]"
.
rewrite
!
prophecy_to_bool_of_bool
.
wp_seq
.
iApply
"HΦ"
.
rewrite
/
coin
;
eauto
with
iFrame
.
Qed
.
End
proof
.
theories/heap_lang/lib/nondet_bool.v
0 → 100644
View file @
1b6cfe1a
From
iris
.
base_logic
Require
Export
invariants
.
From
iris
.
program_logic
Require
Export
weakestpre
.
From
iris
.
heap_lang
Require
Export
lang
proofmode
notation
.
Definition
nondet_bool
:
val
:
=
λ
:
<>,
let
:
"l"
:
=
ref
#
true
in
Fork
(
"l"
<-
#
false
)
;;
!
"l"
.
Section
proof
.
Context
`
{!
heapG
Σ
}.
Lemma
nondet_bool_spec
:
{{{
True
}}}
nondet_bool
#()
{{{
(
b
:
bool
),
RET
#
b
;
True
}}}.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
wp_lam
.
wp_alloc
l
as
"Hl"
.
wp_let
.
pose
proof
(
nroot
.@
"rnd"
)
as
rndN
.
iMod
(
inv_alloc
rndN
_
(
∃
(
b
:
bool
),
l
↦
#
b
)%
I
with
"[Hl]"
)
as
"#Hinv"
;
first
by
eauto
.
wp_apply
wp_fork
.
-
iInv
rndN
as
(?)
"?"
.
wp_store
;
eauto
.
-
wp_seq
.
iInv
rndN
as
(?)
"?"
.
wp_load
.
iSplitR
"HΦ"
;
first
by
eauto
.
by
iApply
"HΦ"
.
Qed
.
End
proof
.
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment