Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Jonas Kastberg
iris
Commits
082ba8f2
Commit
082ba8f2
authored
Feb 02, 2018
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Frame in both sides of a conjunction.
parent
4793ab79
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
9 additions
and
7 deletions
+9
-7
theories/proofmode/class_instances.v
theories/proofmode/class_instances.v
+8
-6
theories/tests/proofmode.v
theories/tests/proofmode.v
+1
-1
No files found.
theories/proofmode/class_instances.v
View file @
082ba8f2
...
...
@@ -565,12 +565,14 @@ Global Instance make_and_true_r P : MakeAnd P True P.
Proof
.
by
rewrite
/
MakeAnd
right_id
.
Qed
.
Global
Instance
make_and_default
P
Q
:
MakeAnd
P
Q
(
P
∧
Q
)
|
100
.
Proof
.
done
.
Qed
.
Global
Instance
frame_and_l
p
R
P1
P2
Q
Q'
:
Frame
p
R
P1
Q
→
MakeAnd
Q
P2
Q'
→
Frame
p
R
(
P1
∧
P2
)
Q'
|
9
.
Proof
.
rewrite
/
Frame
/
MakeAnd
=>
<-
<-
;
eauto
10
with
I
.
Qed
.
Global
Instance
frame_and_r
p
R
P1
P2
Q
Q'
:
Frame
p
R
P2
Q
→
MakeAnd
P1
Q
Q'
→
Frame
p
R
(
P1
∧
P2
)
Q'
|
10
.
Proof
.
rewrite
/
Frame
/
MakeAnd
=>
<-
<-
;
eauto
10
with
I
.
Qed
.
Global
Instance
frame_and
p
progress1
progress2
R
P1
P2
Q1
Q2
Q'
:
MaybeFrame
p
R
P1
Q1
progress1
→
MaybeFrame
p
R
P2
Q2
progress2
→
TCEq
(
progress1
||
progress2
)
true
→
MakeAnd
Q1
Q2
Q'
→
Frame
p
R
(
P1
∧
P2
)
Q'
|
9
.
Proof
.
rewrite
/
MaybeFrame
/
Frame
/
MakeAnd
=>
<-
<-
_
<-
;
eauto
10
with
I
.
Qed
.
Class
MakeOr
(
P
Q
PQ
:
uPred
M
)
:
=
make_or
:
P
∨
Q
⊣
⊢
PQ
.
Global
Instance
make_or_true_l
P
:
MakeOr
True
P
True
.
...
...
theories/tests/proofmode.v
View file @
082ba8f2
...
...
@@ -102,7 +102,7 @@ Proof. iIntros "[H [? _]]". by iFrame. Qed.
Lemma
test_iFrame_pure
(
x
y
z
:
M
)
:
✓
x
→
⌜
y
≡
z
⌝
-
∗
(
✓
x
∧
✓
x
∧
y
≡
z
:
uPred
M
).
Proof
.
iIntros
(
Hv
)
"Hxy"
.
by
iFrame
(
Hv
Hv
)
"Hxy"
.
Qed
.
Proof
.
iIntros
(
Hv
)
"Hxy"
.
iFrame
(
Hv
)
"Hxy"
.
Qed
.
Lemma
test_iFrame_disjunction_1
P1
P2
Q1
Q2
:
□
P1
-
∗
Q2
-
∗
P2
-
∗
(
P1
∗
P2
∗
False
∨
P2
)
∗
(
Q1
∨
Q2
).
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment