ltac_tactics.v 110 KB
Newer Older
1
From iris.proofmode Require Import coq_tactics reduction.
2
From iris.proofmode Require Import base intro_patterns spec_patterns sel_patterns.
3
From iris.bi Require Export bi telescopes.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
From stdpp Require Import namespaces.
From iris.proofmode Require Export classes notation.
From stdpp Require Import hlist pretty.
Set Default Proof Using "Type".
Export ident.

(** For most of the tactics, we want to have tight control over the order and
way in which type class inference is performed. To that end, many tactics make
use of [notypeclasses refine] and the [iSolveTC] tactic to manually invoke type
class inference.

The tactic [iSolveTC] does not use [apply _], as that often leads to issues
because it will try to solve all evars whose type is a typeclass, in
dependency order (according to Matthieu). If one fails, it aborts. However, we
generally rely on progress on the main goal to be solved to make progress
elsewhere. With [typeclasses eauto], that seems to work better.

A drawback of [typeclasses eauto] is that it is multi-success, i.e. whenever
subsequent tactics fail, it will backtrack to [typeclasses eauto] to try the
next type class instance. This is almost always undesired and leads to poor
performance and horrible error messages, so we wrap it in a [once]. *)
Ltac iSolveTC :=
  solve [once (typeclasses eauto)].

28
29
30
(** Tactic used for solving side-conditions arising from TC resolution in iMod
and iInv. *)
Ltac iSolveSideCondition :=
31
  split_and?; try solve [ fast_done | solve_ndisj ].
32

33
34
35
36
37
38
39
(** Used for printing [string]s and [ident]s. *)
Ltac pretty_ident H :=
  lazymatch H with
  | INamed ?H => H
  | ?H => H
  end.

40
41
42
43
44
45
46
47
(** * Misc *)

Ltac iMissingHyps Hs :=
  let Δ :=
    lazymatch goal with
    | |- envs_entails ?Δ _ => Δ
    | |- context[ envs_split _ _ ?Δ ] => Δ
    end in
48
  let Hhyps := pm_eval (envs_dom Δ) in
49
50
51
52
  eval vm_compute in (list_difference Hs Hhyps).

Ltac iTypeOf H :=
  let Δ := match goal with |- envs_entails ?Δ _ => Δ end in
53
  pm_eval (envs_lookup H Δ).
54

55
56
57
Ltac iBiOfGoal :=
  match goal with |- @envs_entails ?PROP _ _ => PROP end.

58
59
60
61
62
63
64
65
66
67
Tactic Notation "iMatchHyp" tactic1(tac) :=
  match goal with
  | |- context[ environments.Esnoc _ ?x ?P ] => tac x P
  end.

(** * Start a proof *)
Tactic Notation "iStartProof" :=
  lazymatch goal with
  | |- envs_entails _ _ => idtac
  | |- ?φ => notypeclasses refine (as_emp_valid_2 φ _ _);
68
               [iSolveTC || fail "iStartProof: not a BI assertion"
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
               |apply tac_adequate]
  end.

(* Same as above, with 2 differences :
   - We can specify a BI in which we want the proof to be done
   - If the goal starts with a let or a ∀, they are automatically
     introduced. *)
Tactic Notation "iStartProof" uconstr(PROP) :=
  lazymatch goal with
  | |- @envs_entails ?PROP' _ _ =>
    (* This cannot be shared with the other [iStartProof], because
    type_term has a non-negligeable performance impact. *)
    let x := type_term (eq_refl : @eq Type PROP PROP') in idtac

  (* We eta-expand [as_emp_valid_2], in order to make sure that
     [iStartProof PROP] works even if [PROP] is the carrier type. In
     this case, typing this expression will end up unifying PROP with
     [bi_car _], and hence trigger the canonical structures mechanism
     to find the corresponding bi. *)
  | |- ?φ => notypeclasses refine ((λ P : PROP, @as_emp_valid_2 φ _ P) _ _ _);
89
               [iSolveTC || fail "iStartProof: not a BI assertion"
90
91
92
93
               |apply tac_adequate]
  end.

(** * Generate a fresh identifier *)
94
95
96
97
98
(** The tactic [iFresh] bumps the fresh name counter in the proof mode
environment and returns the old value.

Note that we use [Ltac] instead of [Tactic Notation] since [Tactic Notation]
tactics can only have side-effects, but cannot return terms. *)
99
Ltac iFresh :=
100
101
102
103
104
  (* We make use of an Ltac hack to allow the [iFresh] tactic to both have a
  side-effect (i.e. to bump the counter) and to return a value (the fresh name).
  We do this by wrapped the side-effect under a [match] in a let-binding. See
  https://stackoverflow.com/a/46178884 *)
  let _ :=
105
    lazymatch goal with
106
    | _ => iStartProof
107
    end in
108
109
110
111
112
113
114
115
116
117
118
  let c :=
    lazymatch goal with
    | |- envs_entails (Envs _ _ ?c) _ => c
    end in
  let _ :=
    lazymatch goal with
    | |- envs_entails (Envs ?Δp ?Δs _) ?Q =>
      let c' := eval vm_compute in (Pos.succ c) in
      convert_concl_no_check (envs_entails (Envs Δp Δs c') Q)
    end in
  constr:(IAnon c).
119
120
121
122

(** * Context manipulation *)
Tactic Notation "iRename" constr(H1) "into" constr(H2) :=
  eapply tac_rename with _ H1 H2 _ _; (* (i:=H1) (j:=H2) *)
123
124
125
126
127
128
    [pm_reflexivity ||
     let H1 := pretty_ident H1 in
     fail "iRename:" H1 "not found"
    |pm_reflexivity ||
     let H2 := pretty_ident H2 in
     fail "iRename:" H2 "not fresh"|].
129

130
131
132
(** Elaborated selection patterns, unlike the type [sel_pat], contains
only specific identifiers, and no wildcards like `#` (with the
exception of the pure selection pattern `%`) *)
133
Inductive esel_pat :=
134
  | ESelPure
135
  | ESelIdent : (* whether the ident is intuitionistic *) bool  ident  esel_pat.
136

Ralf Jung's avatar
Ralf Jung committed
137
Local Ltac iElaborateSelPat_go pat Δ Hs :=
138
139
140
  lazymatch pat with
  | [] => eval cbv in Hs
  | SelPure :: ?pat =>  iElaborateSelPat_go pat Δ (ESelPure :: Hs)
141
  | SelIntuitionistic :: ?pat =>
142
    let Hs' := pm_eval (env_dom (env_intuitionistic Δ)) in
143
    let Δ' := pm_eval (envs_clear_intuitionistic Δ) in
144
145
    iElaborateSelPat_go pat Δ' ((ESelIdent true <$> Hs') ++ Hs)
  | SelSpatial :: ?pat =>
146
147
    let Hs' := pm_eval (env_dom (env_spatial Δ)) in
    let Δ' := pm_eval (envs_clear_spatial Δ) in
148
149
    iElaborateSelPat_go pat Δ' ((ESelIdent false <$> Hs') ++ Hs)
  | SelIdent ?H :: ?pat =>
150
    lazymatch pm_eval (envs_lookup_delete false H Δ) with
151
    | Some (?p,_,?Δ') =>  iElaborateSelPat_go pat Δ' (ESelIdent p H :: Hs)
152
153
154
    | None =>
      let H := pretty_ident H in
      fail "iElaborateSelPat:" H "not found"
155
156
    end
  end.
157
158
(** Converts a selection pattern (given as a string) to a list of
elaborated selection patterns. *)
159
160
161
Ltac iElaborateSelPat pat :=
  lazymatch goal with
  | |- envs_entails ?Δ _ =>
162
    let pat := sel_pat.parse pat in iElaborateSelPat_go pat Δ (@nil esel_pat)
163
164
165
166
  end.

Local Ltac iClearHyp H :=
  eapply tac_clear with _ H _ _; (* (i:=H) *)
167
168
169
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iClear:" H "not found"
170
    |pm_reduce; iSolveTC ||
171
     let H := pretty_ident H in
172
173
174
175
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iClear:" H ":" P "not affine and the goal not absorbing"
    |].

176
177
178
179
180
181
Local Ltac iClear_go Hs :=
  lazymatch Hs with
  | [] => idtac
  | ESelPure :: ?Hs => clear; iClear_go Hs
  | ESelIdent _ ?H :: ?Hs => iClearHyp H; iClear_go Hs
  end.
182
Tactic Notation "iClear" constr(Hs) :=
183
  iStartProof; let Hs := iElaborateSelPat Hs in iClear_go Hs.
184
185
186
187

Tactic Notation "iClear" "(" ident_list(xs) ")" constr(Hs) :=
  iClear Hs; clear xs.

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
(** ** Simplification *)
Tactic Notation "iEval" tactic(t) :=
  iStartProof;
  eapply tac_eval;
    [let x := fresh in intros x; t; unfold x; reflexivity
    |].

Local Ltac iEval_go t Hs :=
  lazymatch Hs with
  | [] => idtac
  | ESelPure :: ?Hs => fail "iEval: %: unsupported selection pattern"
  | ESelIdent _ ?H :: ?Hs =>
    eapply tac_eval_in with _ H _ _ _;
      [pm_reflexivity || let H := pretty_ident H in fail "iEval:" H "not found"
      |let x := fresh in intros x; t; unfold x; reflexivity
      |pm_reflexivity
      |iEval_go t Hs]
  end.

Tactic Notation "iEval" tactic(t) "in" constr(Hs) :=
  iStartProof; let Hs := iElaborateSelPat Hs in iEval_go t Hs.

Tactic Notation "iSimpl" := iEval (simpl).
Tactic Notation "iSimpl" "in" constr(H) := iEval (simpl) in H.

(* It would be nice to also have an `iSsrRewrite`, however, for this we need to
pass arguments to Ssreflect's `rewrite` like `/= foo /bar` in Ltac, see:

  https://sympa.inria.fr/sympa/arc/coq-club/2018-01/msg00000.html

PMP told me (= Robbert) in person that this is not possible with the current
Ltac, but it may be possible in Ltac2. *)

221
222
223
(** * Assumptions *)
Tactic Notation "iExact" constr(H) :=
  eapply tac_assumption with _ H _ _; (* (i:=H) *)
224
    [pm_reflexivity ||
225
     let H := pretty_ident H in
226
     fail "iExact:" H "not found"
227
    |iSolveTC ||
228
     let H := pretty_ident H in
229
230
     let P := match goal with |- FromAssumption _ ?P _ => P end in
     fail "iExact:" H ":" P "does not match goal"
231
    |pm_reduce; iSolveTC ||
232
     let H := pretty_ident H in
233
234
235
236
237
238
239
240
241
     fail "iExact:" H "not absorbing and the remaining hypotheses not affine"].

Tactic Notation "iAssumptionCore" :=
  let rec find Γ i P :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?Q => first [unify P Q; unify i j|find Γ i P]
    end in
  match goal with
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
242
     first [is_evar i; fail 1 | pm_reflexivity]
243
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
244
     is_evar i; first [find Γp i P | find Γs i P]; pm_reflexivity
245
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
246
     first [is_evar i; fail 1 | pm_reflexivity]
247
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
248
     is_evar i; first [find Γp i P | find Γs i P]; pm_reflexivity
249
250
251
252
253
254
255
256
257
  end.

Tactic Notation "iAssumption" :=
  let Hass := fresh in
  let rec find p Γ Q :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?P => first
       [pose proof (_ : FromAssumption p P Q) as Hass;
        eapply (tac_assumption _ _ j p P);
258
          [pm_reflexivity
259
          |apply Hass
260
          |pm_reduce; iSolveTC ||
261
262
263
           fail 1 "iAssumption:" j "not absorbing and the remaining hypotheses not affine"]
       |assert (P = False%I) as Hass by reflexivity;
        apply (tac_false_destruct _ j p P);
264
          [pm_reflexivity
265
266
267
268
269
270
271
272
273
274
275
276
          |exact Hass]
       |find p Γ Q]
    end in
  lazymatch goal with
  | |- envs_entails (Envs ?Γp ?Γs _) ?Q =>
     first [find true Γp Q | find false Γs Q
           |fail "iAssumption:" Q "not found"]
  end.

(** * False *)
Tactic Notation "iExFalso" := apply tac_ex_falso.

277
278
279
(** * Making hypotheses intuitionistic or pure *)
Local Tactic Notation "iIntuitionistic" constr(H) :=
  eapply tac_intuitionistic with _ H _ _ _; (* (i:=H) *)
280
281
    [pm_reflexivity ||
     let H := pretty_ident H in
282
     fail "iIntuitionistic:" H "not found"
283
    |iSolveTC ||
284
     let P := match goal with |- IntoPersistent _ ?P _ => P end in
285
     fail "iIntuitionistic:" P "not persistent"
286
    |pm_reduce; iSolveTC ||
287
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
288
     fail "iIntuitionistic:" P "not affine and the goal not absorbing"
289
    |pm_reflexivity|].
290
291
292

Local Tactic Notation "iPure" constr(H) "as" simple_intropattern(pat) :=
  eapply tac_pure with _ H _ _ _; (* (i:=H1) *)
293
294
295
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iPure:" H "not found"
296
    |iSolveTC ||
297
298
     let P := match goal with |- IntoPure ?P _ => P end in
     fail "iPure:" P "not pure"
299
    |pm_reduce; iSolveTC ||
300
301
302
303
304
305
306
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iPure:" P "not affine and the goal not absorbing"
    |intros pat].

Tactic Notation "iEmpIntro" :=
  iStartProof;
  eapply tac_emp_intro;
307
    [pm_reduce; iSolveTC ||
308
309
310
311
312
     fail "iEmpIntro: spatial context contains non-affine hypotheses"].

Tactic Notation "iPureIntro" :=
  iStartProof;
  eapply tac_pure_intro;
313
    [pm_reflexivity
314
    |iSolveTC ||
315
316
317
318
319
320
     let P := match goal with |- FromPure _ ?P _ => P end in
     fail "iPureIntro:" P "not pure"
    |].

(** Framing *)
Local Ltac iFrameFinish :=
321
  pm_prettify;
322
323
324
325
326
327
328
329
330
  try match goal with
  | |- envs_entails _ True => by iPureIntro
  | |- envs_entails _ emp => iEmpIntro
  end.

Local Ltac iFramePure t :=
  iStartProof;
  let φ := type of t in
  eapply (tac_frame_pure _ _ _ _ t);
331
    [iSolveTC || fail "iFrame: cannot frame" φ
332
333
334
335
336
    |iFrameFinish].

Local Ltac iFrameHyp H :=
  iStartProof;
  eapply tac_frame with _ H _ _ _;
337
338
339
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iFrame:" H "not found"
340
    |iSolveTC ||
341
342
343
344
345
346
347
     let R := match goal with |- Frame _ ?R _ _ => R end in
     fail "iFrame: cannot frame" R
    |iFrameFinish].

Local Ltac iFrameAnyPure :=
  repeat match goal with H : _ |- _ => iFramePure H end.

348
Local Ltac iFrameAnyIntuitionistic :=
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => repeat iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_intuitionistic Δ)) in go Hs
  end.

Local Ltac iFrameAnySpatial :=
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => try iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_spatial Δ)) in go Hs
  end.

Tactic Notation "iFrame" := iFrameAnySpatial.

Tactic Notation "iFrame" "(" constr(t1) ")" :=
  iFramePure t1.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" :=
  iFramePure t1; iFrame ( t2 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" :=
  iFramePure t1; iFrame ( t2 t3 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ).

389
390
391
392
Local Ltac iFrame_go Hs :=
  lazymatch Hs with
  | [] => idtac
  | SelPure :: ?Hs => iFrameAnyPure; iFrame_go Hs
393
  | SelIntuitionistic :: ?Hs => iFrameAnyIntuitionistic; iFrame_go Hs
394
395
396
397
  | SelSpatial :: ?Hs => iFrameAnySpatial; iFrame_go Hs
  | SelIdent ?H :: ?Hs => iFrameHyp H; iFrame_go Hs
  end.

398
Tactic Notation "iFrame" constr(Hs) :=
399
  let Hs := sel_pat.parse Hs in iFrame_go Hs.
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
Tactic Notation "iFrame" "(" constr(t1) ")" constr(Hs) :=
  iFramePure t1; iFrame Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")"
    constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ) Hs.

(** * Basic introduction tactics *)
Local Tactic Notation "iIntro" "(" simple_intropattern(x) ")" :=
  (* In the case the goal starts with an [let x := _ in _], we do not
     want to unfold x and start the proof mode. Instead, we want to
     use intros. So [iStartProof] has to be called only if [intros]
     fails *)
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
  (* We use [_ || _] instead of [first [..|..]] so that the error in the second
  branch propagates upwards. *)
  (
    (* introduction at the meta level *)
    intros x
  ) || (
    (* introduction in the logic *)
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ _ =>
      eapply tac_forall_intro;
        [iSolveTC ||
         let P := match goal with |- FromForall ?P _ => P end in
         fail "iIntro: cannot turn" P "into a universal quantifier"
        |pm_prettify; intros x
         (* subgoal *)]
    end).
445
446
447
448

Local Tactic Notation "iIntro" constr(H) :=
  iStartProof;
  first
449
  [(* (?Q → _) *)
450
    eapply tac_impl_intro with _ H _ _ _; (* (i:=H) *)
451
      [iSolveTC
452
      |pm_reduce; iSolveTC ||
453
454
455
       let P := lazymatch goal with |- Persistent ?P => P end in
       fail 1 "iIntro: introducing non-persistent" H ":" P
              "into non-empty spatial context"
456
457
458
      |pm_reflexivity ||
       let H := pretty_ident H in
       fail 1 "iIntro:" H "not fresh"
459
      |iSolveTC
460
461
      |(* subgoal *)]
  |(* (_ -∗ _) *)
462
    eapply tac_wand_intro with _ H _ _; (* (i:=H) *)
463
      [iSolveTC
464
465
466
      | pm_reflexivity ||
        let H := pretty_ident H in
        fail 1 "iIntro:" H "not fresh"
467
468
      |(* subgoal *)]
  | fail 1 "iIntro: nothing to introduce" ].
469
470
471
472

Local Tactic Notation "iIntro" "#" constr(H) :=
  iStartProof;
  first
473
  [(* (?P → _) *)
474
   eapply tac_impl_intro_intuitionistic with _ H _ _ _; (* (i:=H) *)
475
476
477
478
479
480
481
482
483
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- IntoPersistent _ ?P _ => P end in
      fail 1 "iIntro:" P "not persistent"
     |pm_reflexivity ||
      let H := pretty_ident H in
      fail 1 "iIntro:" H "not fresh"
     |(* subgoal *)]
  |(* (?P -∗ _) *)
484
   eapply tac_wand_intro_intuitionistic with _ H _ _ _; (* (i:=H) *)
485
486
487
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- IntoPersistent _ ?P _ => P end in
488
      fail 1 "iIntro:" P "not intuitionistic"
489
490
491
492
493
494
495
496
     |iSolveTC ||
      let P := match goal with |- TCOr (Affine ?P) _ => P end in
      fail 1 "iIntro:" P "not affine and the goal not absorbing"
     |pm_reflexivity ||
      let H := pretty_ident H in
      fail 1 "iIntro:" H "not fresh"
     |(* subgoal *)]
  |fail 1 "iIntro: nothing to introduce"].
497

498
499
500
501
502
503
Local Tactic Notation "iIntro" constr(H) "as" constr(p) :=
  lazymatch p with
  | true => iIntro #H
  | _ =>  iIntro H
  end.

504
Local Tactic Notation "iIntro" "_" :=
505
  iStartProof;
506
  first
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
  [(* (?Q → _) *)
   eapply tac_impl_intro_drop;
     [iSolveTC
     |(* subgoal *)]
  |(* (_ -∗ _) *)
   eapply tac_wand_intro_drop;
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- TCOr (Affine ?P) _ => P end in
      fail 1 "iIntro:" P "not affine and the goal not absorbing"
     |(* subgoal *)]
  |(* (∀ _, _) *)
   iIntro (_)
   (* subgoal *)
  |fail 1 "iIntro: nothing to introduce"].
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

Local Tactic Notation "iIntroForall" :=
  lazymatch goal with
  | |-  _, ?P => fail (* actually an →, this is handled by iIntro below *)
  | |-  _, _ => intro
  | |- let _ := _ in _ => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ ( x : _, _) => let x' := fresh x in iIntro (x')
    end
  end.
Local Tactic Notation "iIntro" :=
  lazymatch goal with
  | |- _  ?P => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ (_ - _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    | |- envs_entails _ (_  _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    end
  end.

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
(** * Revert *)
Local Tactic Notation "iForallRevert" ident(x) :=
  let err x :=
    intros x;
    iMatchHyp (fun H P =>
      lazymatch P with
      | context [x] => fail 2 "iRevert:" x "is used in hypothesis" H
      end) in
  iStartProof;
  let A := type of x in
  lazymatch type of A with
  | Prop => revert x; first [apply tac_pure_revert|err x]
  | _ => revert x; first [apply tac_forall_revert|err x]
  end.

560
561
562
563
564
565
566
567
(** The tactic [iRevertHyp H with tac] reverts the hypothesis [H] and calls
[tac] with a Boolean that is [true] iff [H] was in the intuitionistic context. *)
Tactic Notation "iRevertHyp" constr(H) "with" tactic1(tac) :=
  (* Create a Boolean evar [p] to keep track of whether the hypothesis [H] was
  in the intuitionistic context. *)
  let p := fresh in evar (p : bool);
  let p' := eval unfold p in p in clear p;
  eapply tac_revert with _ H p' _;
568
569
570
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iRevert:" H "not found"
571
572
573
    |pm_reduce; tac p'].

Tactic Notation "iRevertHyp" constr(H) := iRevertHyp H with (fun _ => idtac).
574

575
576
577
578
579
580
581
Tactic Notation "iRevert" constr(Hs) :=
  let rec go Hs :=
    lazymatch Hs with
    | [] => idtac
    | ESelPure :: ?Hs =>
       repeat match goal with x : _ |- _ => revert x end;
       go Hs
582
    | ESelIdent _ ?H :: ?Hs => iRevertHyp H; go Hs
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
    end in
  iStartProof; let Hs := iElaborateSelPat Hs in go Hs.

Tactic Notation "iRevert" "(" ident(x1) ")" :=
  iForallRevert x1.
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" :=
  iForallRevert x2; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" :=
  iForallRevert x3; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")" :=
  iForallRevert x4; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" :=
  iForallRevert x5; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" :=
  iForallRevert x6; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" :=
  iForallRevert x7; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" :=
  iForallRevert x8; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).

Tactic Notation "iRevert" "(" ident(x1) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")"
    constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 ).

629
(** * The specialize and pose proof tactics *)
630
631
632
633
634
635
636
637
638
639
Record iTrm {X As S} :=
  ITrm { itrm : X ; itrm_vars : hlist As ; itrm_hyps : S }.
Arguments ITrm {_ _ _} _ _ _.

Notation "( H $! x1 .. xn )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) "") (at level 0, x1, xn at level 9).
Notation "( H $! x1 .. xn 'with' pat )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) pat) (at level 0, x1, xn at level 9).
Notation "( H 'with' pat )" := (ITrm H hnil pat) (at level 0).

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
(* The tactic [iIntoEmpValid] tactic solves a goal [bi_emp_valid Q]. The
argument [t] must be a Coq term whose type is of the following shape:

[∀ (x_1 : A_1) .. (x_n : A_n), φ]

and so that we have an instance `AsValid φ Q`.

Examples of such [φ]s are

- [bi_emp_valid P], in which case [Q] should be [P]
- [P1 ⊢ P2], in which case [Q] should be [P1 -∗ P2]
- [P1 ⊣⊢ P2], in which case [Q] should be [P1 ↔ P2]

The tactic instantiates each dependent argument [x_i] with an evar and generates
a goal [R] for each non-dependent argument [x_i : R].  For example, if the
original goal was [Q] and [t] has type [∀ x, P x → Q], then it generates an evar
[?x] for [x] and a subgoal [P ?x]. *)
Local Ltac iIntoEmpValid t :=
  let go_specialize t tT :=
    lazymatch tT with                (* We do not use hnf of tT, because, if
                                        entailment is not opaque, then it would
                                        unfold it. *)
    | ?P  ?Q => let H := fresh in assert P as H; [|iIntoEmpValid uconstr:(t H); clear H]
    |  _ : ?T, _ =>
      (* Put [T] inside an [id] to avoid TC inference from being invoked. *)
      (* This is a workarround for Coq bug #6583. *)
      let e := fresh in evar (e:id T);
      let e' := eval unfold e in e in clear e; iIntoEmpValid (t e')
    end
  in
    (* We try two reduction tactics for the type of t before trying to
       specialize it. We first try the head normal form in order to
       unfold all the definition that could hide an entailment.  Then,
       we try the much weaker [eval cbv zeta], because entailment is
       not necessarilly opaque, and could be unfolded by [hnf].

       However, for calling type class search, we only use [cbv zeta]
       in order to make sure we do not unfold [bi_emp_valid]. *)
    let tT := type of t in
    first
      [ let tT' := eval hnf in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in
        notypeclasses refine (as_emp_valid_1 tT _ _);
          [iSolveTC || fail 1 "iPoseProof: not a BI assertion"
          |exact t]].

Tactic Notation "iPoseProofCoreHyp" constr(H) "as" constr(Hnew) :=
  eapply tac_pose_proof_hyp with _ _ H _ Hnew _;
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iPoseProof:" H "not found"
    |pm_reflexivity ||
     let Htmp := pretty_ident Hnew in
     fail "iPoseProof:" Hnew "not fresh"
    |].

Tactic Notation "iPoseProofCoreLem"
    constr(lem) "as" constr(Hnew) "before_tc" tactic(tac) :=
  eapply tac_pose_proof with _ Hnew _; (* (j:=H) *)
    [iIntoEmpValid lem
    |pm_reflexivity ||
     let Htmp := pretty_ident Hnew in
     fail "iPoseProof:" Hnew "not fresh"
    |tac];
  (* Solve all remaining TC premises generated by [iIntoEmpValid] *)
  try iSolveTC.

708
709
710
711
712
(** There is some hacky stuff going on here: because of Coq bug #6583, unresolved
type classes in the arguments `xs` are resolved at arbitrary moments. Tactics
like `apply`, `split` and `eexists` wrongly trigger type class search to resolve
these holes. To avoid TC being triggered too eagerly, this tactic uses `refine`
at most places instead of `apply`. *)
713
Local Ltac iSpecializeArgs_go H xs :=
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
  lazymatch xs with
  | hnil => idtac
  | hcons ?x ?xs =>
     notypeclasses refine (tac_forall_specialize _ _ H _ _ _ _ _ _ _);
       [pm_reflexivity ||
        let H := pretty_ident H in
        fail "iSpecialize:" H "not found"
       |iSolveTC ||
        let P := match goal with |- IntoForall ?P _ => P end in
        fail "iSpecialize: cannot instantiate" P "with" x
       |lazymatch goal with (* Force [A] in [ex_intro] to deal with coercions. *)
        | |-  _ : ?A, _ =>
          notypeclasses refine (@ex_intro A _ x (conj _ _))
        end; [shelve..|pm_reflexivity|iSpecializeArgs_go H xs]]
  end.
729
730
Local Tactic Notation "iSpecializeArgs" constr(H) open_constr(xs) :=
  iSpecializeArgs_go H xs.
731

732
Ltac iSpecializePat_go H1 pats :=
733
734
735
736
737
738
739
740
741
742
743
744
  let solve_to_wand H1 :=
    iSolveTC ||
    let P := match goal with |- IntoWand _ _ ?P _ _ => P end in
    fail "iSpecialize:" P "not an implication/wand" in
  let solve_done d :=
    lazymatch d with
    | true =>
       done ||
       let Q := match goal with |- envs_entails _ ?Q => Q end in
       fail "iSpecialize: cannot solve" Q "using done"
    | false => idtac
    end in
745
  lazymatch pats with
746
747
748
    | [] => idtac
    | SForall :: ?pats =>
       idtac "[IPM] The * specialization pattern is deprecated because it is applied implicitly.";
749
       iSpecializePat_go H1 pats
750
751
752
753
    | SIdent ?H2 [] :: ?pats =>
       (* If we not need to specialize [H2] we can avoid a lot of unncessary
       context manipulation. *)
       notypeclasses refine (tac_specialize false _ _ _ H2 _ H1 _ _ _ _ _ _ _ _ _ _);
754
755
756
757
758
759
         [pm_reflexivity ||
          let H2 := pretty_ident H2 in
          fail "iSpecialize:" H2 "not found"
         |pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
760
761
762
763
         |iSolveTC ||
          let P := match goal with |- IntoWand _ _ ?P ?Q _ => P end in
          let Q := match goal with |- IntoWand _ _ ?P ?Q _ => Q end in
          fail "iSpecialize: cannot instantiate" P "with" Q
764
         |pm_reflexivity|iSpecializePat_go H1 pats]
765
766
767
768
769
770
771
772
773
774
    | SIdent ?H2 ?pats1 :: ?pats =>
       (* If [H2] is in the intuitionistic context, we copy it into a new
       hypothesis [Htmp], so that it can be used multiple times. *)
       let H2tmp := iFresh in
       iPoseProofCoreHyp H2 as H2tmp;
       (* Revert [H1] and re-introduce it later so that it will not be consumsed
       by [pats1]. *)
       iRevertHyp H1 with (fun p =>
         iSpecializePat_go H2tmp pats1;
           [.. (* side-conditions of [iSpecialize] *)
775
           |iIntro H1 as p]);
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
         (* We put the stuff below outside of the closure to get less verbose
         Ltac backtraces (which would otherwise include the whole closure). *)
         [.. (* side-conditions of [iSpecialize] *)
         |(* Use [remove_intuitionistic = true] to remove the copy [Htmp]. *)
          notypeclasses refine (tac_specialize true _ _ _ H2tmp _ H1 _ _ _ _ _ _ _ _ _ _);
            [pm_reflexivity ||
             let H2tmp := pretty_ident H2tmp in
             fail "iSpecialize:" H2tmp "not found"
            |pm_reflexivity ||
             let H1 := pretty_ident H1 in
             fail "iSpecialize:" H1 "not found"
            |iSolveTC ||
             let P := match goal with |- IntoWand _ _ ?P ?Q _ => P end in
             let Q := match goal with |- IntoWand _ _ ?P ?Q _ => Q end in
             fail "iSpecialize: cannot instantiate" P "with" Q
            |pm_reflexivity|iSpecializePat_go H1 pats]]
792
793
    | SPureGoal ?d :: ?pats =>
       notypeclasses refine (tac_specialize_assert_pure _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
794
795
796
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
797
798
799
800
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- FromPure _ ?Q _ => Q end in
          fail "iSpecialize:" Q "not pure"
801
         |pm_reflexivity
802
         |solve_done d (*goal*)
803
         |iSpecializePat_go H1 pats]
804
805
    | SGoal (SpecGoal GIntuitionistic false ?Hs_frame [] ?d) :: ?pats =>
       notypeclasses refine (tac_specialize_assert_intuitionistic _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
806
807
808
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
809
810
811
812
813
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
         |iSolveTC
814
         |pm_reflexivity
815
         |iFrame Hs_frame; solve_done d (*goal*)
816
         |iSpecializePat_go H1 pats]
817
818
    | SGoal (SpecGoal GIntuitionistic _ _ _ _) :: ?pats =>
       fail "iSpecialize: cannot select hypotheses for intuitionistic premise"
819
820
821
    | SGoal (SpecGoal ?m ?lr ?Hs_frame ?Hs ?d) :: ?pats =>
       let Hs' := eval cbv in (if lr then Hs else Hs_frame ++ Hs) in
       notypeclasses refine (tac_specialize_assert _ _ _ _ H1 _ lr Hs' _ _ _ _ _ _ _ _ _ _ _);
822
823
824
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
825
826
         |solve_to_wand H1
         |lazymatch m with
827
          | GSpatial => class_apply add_modal_id
828
829
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
830
         |pm_reflexivity ||
831
832
833
          let Hs' := iMissingHyps Hs' in
          fail "iSpecialize: hypotheses" Hs' "not found"
         |iFrame Hs_frame; solve_done d (*goal*)
834
         |iSpecializePat_go H1 pats]
835
836
    | SAutoFrame GIntuitionistic :: ?pats =>
       notypeclasses refine (tac_specialize_assert_intuitionistic _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
837
838
839
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
840
841
842
843
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
844
         |pm_reflexivity
845
         |solve [iFrame "∗ #"]
846
         |iSpecializePat_go H1 pats]
847
848
    | SAutoFrame ?m :: ?pats =>
       notypeclasses refine (tac_specialize_frame _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
849
850
851
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
852
853
         |solve_to_wand H1
         |lazymatch m with
Robbert Krebbers's avatar
Robbert Krebbers committed
854
          | GSpatial => class_apply add_modal_id
855
856
857
858
859
860
861
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
         |first
            [notypeclasses refine (tac_unlock_emp _ _ _)
            |notypeclasses refine (tac_unlock_True _ _ _)
            |iFrame "∗ #"; notypeclasses refine (tac_unlock _ _ _)
            |fail "iSpecialize: premise cannot be solved by framing"]
862
863
864
865
866
         |exact eq_refl]; iIntro H1; iSpecializePat_go H1 pats
    end.

Local Tactic Notation "iSpecializePat" open_constr(H) constr(pat) :=
  let pats := spec_pat.parse pat in iSpecializePat_go H pats.
867
868

(* The argument [p] denotes whether the conclusion of the specialized term is
869
intuitionistic. If so, one can use all spatial hypotheses for both proving the
870
871
872
873
874
875
876
877
878
premises and the remaning goal. The argument [p] can either be a Boolean or an
introduction pattern, which will be coerced into [true] when it solely contains
`#` or `%` patterns at the top-level.

In case the specialization pattern in [t] states that the modality of the goal
should be kept for one of the premises (i.e. [>[H1 .. Hn]] is used) then [p]
defaults to [false] (i.e. spatial hypotheses are not preserved). *)
Tactic Notation "iSpecializeCore" open_constr(H)
    "with" open_constr(xs) open_constr(pat) "as" constr(p) :=
879
  let p := intro_pat_intuitionistic p in
880
881
882
883
884
885
886
  let pat := spec_pat.parse pat in
  let H :=
    lazymatch type of H with
    | string => constr:(INamed H)
    | _ => H
    end in
  iSpecializeArgs H xs; [..|
Robbert Krebbers's avatar
Robbert Krebbers committed
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
    lazymatch type of H with
    | ident =>
       (* The lemma [tac_specialize_intuitionistic_helper] allows one to use the
       whole spatial context for:
       - proving the premises of the lemma we specialize, and,
       - the remaining goal.

       We can only use if all of the following properties hold:
       - The result of the specialization is persistent.
       - No modality is eliminated.
       - If the BI is not affine, the hypothesis should be in the intuitionistic
         context.

       As an optimization, we do only use [tac_specialize_intuitionistic_helper]
       if no implications nor wands are eliminated, i.e. [pat ≠ []]. *)
       let pat := spec_pat.parse pat in
       lazymatch eval compute in
         (p && bool_decide (pat  []) && negb (existsb spec_pat_modal pat)) with
       | true =>
          (* Check that if the BI is not affine, the hypothesis is in the
          intuitionistic context. *)
          lazymatch iTypeOf H with
          | Some (?q, _) =>
             let PROP := iBiOfGoal in
             lazymatch eval compute in (q || tc_to_bool (BiAffine PROP)) with
             | true =>
                notypeclasses refine (tac_specialize_intuitionistic_helper _ _ H _ _ _ _ _ _ _ _ _ _ _);
                  [pm_reflexivity
                   (* This premise, [envs_lookup j Δ = Some (q,P)],
                   holds because [iTypeOf] succeeded *)
                  |pm_reduce; iSolveTC
                   (* This premise, [if q then TCTrue else BiAffine PROP],
                   holds because [q || TC_to_bool (BiAffine PROP)] is true *)
                  |iSpecializePat H pat;
                    [..
                    |notypeclasses refine (tac_specialize_intuitionistic_helper_done _ H _ _ _);
                     pm_reflexivity]
                  |iSolveTC ||
                   let Q := match goal with |- IntoPersistent _ ?Q _ => Q end in
                   fail "iSpecialize:" Q "not persistent"
                  |pm_reflexivity
                  |(* goal *)]
             | false => iSpecializePat H pat
             end
          | None =>
             let H := pretty_ident H in
             fail "iSpecialize:" H "not found"
          end
       | false => iSpecializePat H pat
       end
    | _ => fail "iSpecialize:" H "should be a hypothesis, use iPoseProof instead"
    end].
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

Tactic Notation "iSpecializeCore" open_constr(t) "as" constr(p) :=
  lazymatch type of t with
  | string => iSpecializeCore t with hnil "" as p
  | ident => iSpecializeCore t with hnil "" as p
  | _ =>
    lazymatch t with
    | ITrm ?H ?xs ?pat => iSpecializeCore H with xs pat as p
    | _ => fail "iSpecialize:" t "should be a proof mode term"
    end
  end.

Tactic Notation "iSpecialize" open_constr(t) :=
  iSpecializeCore t as false.
Tactic Notation "iSpecialize" open_constr(t) "as" "#" :=
  iSpecializeCore t as true.

956
957
958
959
960
961
962
963
964
965
(** The tactic [iPoseProofCore lem as p lazy_tc tac] inserts the resource
described by [lem] into the context. The tactic takes a continuation [tac] as
its argument, which is called with a temporary fresh name [H] that refers to
the hypothesis containing [lem].

There are a couple of additional arguments:

- The argument [p] is like that of [iSpecialize]. It is a Boolean that denotes
  whether the conclusion of the specialized term [lem] is persistent.
- The argument [lazy_tc] denotes whether type class inference on the premises
Robbert Krebbers's avatar
Robbert Krebbers committed
966
967
  of [lem] should be performed before (if [lazy_tc = false]) or after (if
  [lazy_tc = true]) [tac H] is called.
968
969
970
971
972
973
974
975
976
977

Both variants of [lazy_tc] are used in other tactics that build on top of
[iPoseProofCore]:

- The tactic [iApply] uses lazy type class inference (i.e. [lazy_tc = true]),
  so that evars can first be matched against the goal before being solved by
  type class inference.
- The tactic [iDestruct] uses eager type class inference (i.e. [lazy_tc = false])
  because it may be not possible to eliminate logical connectives before all
  type class constraints have been resolved. *)
978
979
980
981
982
983
984
985
Tactic Notation "iPoseProofCore" open_constr(lem)
    "as" constr(p) constr(lazy_tc) tactic(tac) :=
  iStartProof;
  let Htmp := iFresh in
  let t := lazymatch lem with ITrm ?t ?xs ?pat => t | _ => lem end in
  let t := lazymatch type of t with string => constr:(INamed t) | _ => t end in
  let spec_tac _ :=
    lazymatch lem with
Robbert Krebbers's avatar
Robbert Krebbers committed
986
    | ITrm _ ?xs ?pat => iSpecializeCore (ITrm Htmp xs pat) as p
987
988
    | _ => idtac
    end in
Robbert Krebbers's avatar
Robbert Krebbers committed
989
990
991
992
993
994
995
996
997
  lazymatch type of t with
  | ident => iPoseProofCoreHyp t as Htmp; spec_tac (); [..|tac Htmp]
  | _ =>
     lazymatch eval compute in lazy_tc with
     | true =>
        iPoseProofCoreLem t as Htmp before_tc (spec_tac (); [..|tac Htmp])
     | false =>
        iPoseProofCoreLem t as Htmp before_tc (spec_tac ()); [..|tac Htmp]
     end
998
999
  end.

1000
(** * The apply tactic *)
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
(** [iApply lem] takes an argument [lem : P₁ -∗ .. -∗ Pₙ -∗ Q] (after the
specialization patterns in [lem] have been executed), where [Q] should match
the goal, and generates new goals [P1] ... [Pₙ]. Depending on the number of
premises [n], the tactic will have the following behavior:

- If [n = 0], it will immediately solve the goal (i.e. it will not generate any
  subgoals). When working in a general BI, this means that the tactic can fail
  in case there are non-affine spatial hypotheses in the context prior to using
  the [iApply] tactic. Note that if [n = 0], the tactic behaves exactly like
  [iExact lem].
- If [n > 0] it will generate a goals [P₁] ... [Pₙ]. All spatial hypotheses
  will be transferred to the last goal, i.e. [Pₙ]; the other goals will receive
  no spatial hypotheses. If you want to control more precisely how the spatial
  hypotheses are subdivided, you should add additional introduction patterns to
  [lem]. *)

(* The helper [iApplyHypExact] takes care of the [n=0] case. It fails with level
0 if we should proceed to the [n > 0] case, and with level 1 if there is an
actual error. *)
Local Ltac iApplyHypExact H :=
  first
    [eapply tac_assumption with _ H _ _; (* (i:=H) *)
       [pm_reflexivity || fail 1
       |iSolveTC || fail 1
       |pm_reduce; iSolveTC]
    |lazymatch iTypeOf H with
     | Some (_,?Q) =>
        fail 2 "iApply:" Q "not absorbing and the remaining hypotheses not affine"
     end].
Local Ltac iApplyHypLoop H :=
  first
1032
    [eapply tac_apply with _ H _ _ _;
1033
      [pm_reflexivity
1034
      |iSolveTC
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
      |pm_prettify (* reduce redexes created by instantiation *)]
    |iSpecializePat H "[]"; last iApplyHypLoop H].

Tactic Notation "iApplyHyp" constr(H) :=
  first
    [iApplyHypExact H
    |iApplyHypLoop H
    |lazymatch iTypeOf H with
     | Some (_,?Q) => fail 1 "iApply: cannot apply" Q
     end].
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055

Tactic Notation "iApply" open_constr(lem) :=
  iPoseProofCore lem as false true (fun H => iApplyHyp H).

(** * Disjunction *)
Tactic Notation "iLeft" :=
  iStartProof;
  eapply tac_or_l;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iLeft:" P "not a disjunction"
1056
    |(* subgoal *)].
1057
1058
1059
1060
1061
1062
Tactic Notation "iRight" :=
  iStartProof;
  eapply tac_or_r;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iRight:" P "not a disjunction"
1063
    |(* subgoal *)].
1064
1065
1066

Local Tactic Notation "iOrDestruct" constr(H) "as" constr(H1) constr(H2) :=
  eapply tac_or_destruct with _ _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
1067
1068
1069
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iOrDestruct:" H "not found"
1070
1071
1072
    |iSolveTC ||
     let P := match goal with |- IntoOr ?P _ _ => P end in
     fail "iOrDestruct: cannot destruct" P
1073
1074
1075
1076
1077
1078
    |pm_reflexivity ||
     let H1 := pretty_ident H1 in
     fail "iOrDestruct:" H1 "not fresh"
    |pm_reflexivity ||
     let H2 := pretty_ident H2 in
     fail "iOrDestruct:" H2 "not fresh"
1079
1080
    |(* subgoal 1 *)
    |(* subgoal 2 *)].
1081
1082
1083
1084
1085
1086
1087

(** * Conjunction and separating conjunction *)
Tactic Notation "iSplit" :=
  iStartProof;
  eapply tac_and_split;
    [iSolveTC ||
     let P := match goal with |- FromAnd ?P _ _ => P end in
1088
1089
1090
     fail "iSplit:" P "not a conjunction"
    |(* subgoal 1 *)
    |(* subgoal 2 *)].
1091
1092
1093
1094
1095
1096
1097
1098
1099

Tactic Notation "iSplitL" constr(Hs) :=
  iStartProof;
  let Hs := words Hs in
  let Hs := eval vm_compute in (INamed <$> Hs) in
  eapply tac_sep_split with _ _ Left Hs _ _; (* (js:=Hs) *)
    [iSolveTC ||
     let P := match goal with |- FromSep _ ?P _ _ => P end in
     fail "iSplitL:" P "not a separating conjunction"
1100
    |pm_reflexivity ||
1101
1102
     let Hs := iMissingHyps Hs in
     fail "iSplitL: hypotheses" Hs "not found"
1103
1104
    |(* subgoal 1 *)
    |(* subgoal 2 *)].
1105
1106
1107
1108
1109
1110
1111
1112
1113

Tactic Notation "iSplitR" constr(Hs) :=
  iStartProof;
  let Hs := words Hs in
  let Hs := eval vm_compute in (INamed <$> Hs) in
  eapply tac_sep_split with _ _ Right Hs _ _; (* (js:=Hs) *)
    [iSolveTC ||
     let P := match goal with |- FromSep _ ?P _ _ => P end in
     fail "iSplitR:" P "not a separating conjunction"
1114
    |pm_reflexivity ||
1115
1116
     let Hs := iMissingHyps Hs in
     fail "iSplitR: hypotheses" Hs "not found"
1117
1118
    |(* subgoal 1 *)
    |(* subgoal 2 *)].
1119
1120
1121
1122
1123
1124

Tactic Notation "iSplitL" := iSplitR "".
Tactic Notation "iSplitR" := iSplitL "".

Local Tactic Notation "iAndDestruct" constr(H) "as" constr(H1) constr(H2) :=
  eapply tac_and_destruct with _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
1125
1126
1127
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iAndDestruct:" H "not found"
1128
    |pm_reduce; iSolveTC ||
1129
1130
1131
1132
1133
1134
     let P :=
       lazymatch goal with
       | |- IntoSep ?P _ _ => P
       | |- IntoAnd _ ?P _ _ => P
       end in
     fail "iAndDestruct: cannot destruct" P
1135
1136
1137
    |pm_reflexivity ||
     let H1 := pretty_ident H1 in
     let H2 := pretty_ident H2 in
1138
     fail "iAndDestruct:" H1 "or" H2 "not fresh"
1139
    |(* subgoal *)].
1140
1141
1142

Local Tactic Notation "iAndDestructChoice" constr(H) "as" constr(d) constr(H') :=
  eapply tac_and_destruct_choice with _ H _ d H' _ _ _;
1143
1144
    [pm_reflexivity || fail "iAndDestructChoice:" H "not found"
    |pm_reduce; iSolveTC ||
1145
1146
     let P := match goal with |- TCOr (IntoAnd _ ?P _ _) _ => P end in
     fail "iAndDestructChoice: cannot destruct" P
1147
1148
    |pm_reflexivity ||
     let H' := pretty_ident H' in
1149
     fail "iAndDestructChoice:" H' "not fresh"
1150
    |(* subgoal *)].
1151
1152
1153
1154
1155
1156
1157
1158

(** * Existential *)
Tactic Notation "iExists" uconstr(x1) :=
  iStartProof;
  eapply tac_exist;
    [iSolveTC ||
     let P := match goal with |- FromExist ?P _ => P end in
     fail "iExists:" P "not an existential"
1159
1160
    |pm_prettify; eexists x1
     (* subgoal *) ].
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) :=
  iExists x1; iExists x2.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) :=
  iExists x1; iExists x2, x3.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) :=
  iExists x1; iExists x2, x3, x4.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) :=
  iExists x1; iExists x2, x3, x4, x5.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) :=
  iExists x1; iExists x2, x3, x4, x5, x6.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) "," uconstr(x7) :=
  iExists x1; iExists x2, x3, x4, x5, x6, x7.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) "," uconstr(x7) ","
    uconstr(x8) :=
  iExists x1; iExists x2, x3, x4, x5, x6, x7, x8.

Local Tactic Notation "iExistDestruct" constr(H)
    "as" simple_intropattern(x) constr(Hx) :=
  eapply tac_exist_destruct with H _ Hx _ _; (* (i:=H) (j:=Hx) *)
1186
1187
1188
    [pm_reflexivity ||