agree.v 17.1 KB
Newer Older
1
From iris.algebra Require Export cmra.
Ralf Jung's avatar
Ralf Jung committed
2
From iris.algebra Require Import list.
3
From iris.base_logic Require Import base_logic.
Ralf Jung's avatar
Ralf Jung committed
4 5 6 7
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Local Arguments op _ _ _ !_ /.
Local Arguments pcore _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
Record agree (A : Type) : Type := Agree {
Ralf Jung's avatar
Ralf Jung committed
10 11
  agree_car : A;
  agree_with : list A;
Robbert Krebbers's avatar
Robbert Krebbers committed
12
}.
Ralf Jung's avatar
Ralf Jung committed
13 14 15 16 17 18 19 20 21 22
Arguments Agree {_} _ _.
Arguments agree_car {_} _.
Arguments agree_with {_} _.

(* Some theory about set-inclusion on lists and lists of which all elements are equal.
   TODO: Move this elsewhere. *)
Definition list_setincl `(R : relation A) (al bl : list A) :=
   a, a  al   b, b  bl  R a b.
Definition list_setequiv `(R : relation A) (al bl : list A) :=
  list_setincl R al bl  list_setincl R bl al.
23 24 25
(* list_agrees is carefully written such that, when applied to a
   singleton, it is convertible to True. This makes working with
   agreement much more pleasant. *)
Ralf Jung's avatar
Ralf Jung committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Definition list_agrees `(R : relation A) (al : list A) :=
  match al with
  | [] => True
  | [a] => True
  | a :: al =>  b, b  al  R a b
  end.

Lemma list_agrees_alt `(R : relation A) `{Equivalence _ R} al :
  list_agrees R al  ( a b, a  al  b  al  R a b).
Proof.
  destruct al as [|a [|b al]].
  - split; last done. intros _ ? ? []%elem_of_nil.
  - split; last done. intros _ ? ? ->%elem_of_list_singleton ->%elem_of_list_singleton. done.
  - simpl. split.
    + intros Hl a' b' [->|Ha']%elem_of_cons.
      * intros [->|Hb']%elem_of_cons; first done. auto.
      * intros [->|Hb']%elem_of_cons; first by (symmetry; auto).
        trans a; last by auto. symmetry. auto.
    + intros Hl b' Hb'. apply Hl; set_solver.
Qed.

Section list_theory.
  Context `(R: relation A) `{Equivalence A R}.
Ralf Jung's avatar
Ralf Jung committed
49
  Collection Hyps := Type H.
50
  Local Set Default Proof Using "Hyps".
Ralf Jung's avatar
Ralf Jung committed
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

  Global Instance: PreOrder (list_setincl R).
  Proof.
    split.
    - intros al a Ha. set_solver.
    - intros al bl cl Hab Hbc a Ha. destruct (Hab _ Ha) as (b & Hb & Rab).
      destruct (Hbc _ Hb) as (c & Hc & Rbc). exists c. split; first done.
      by trans b.
  Qed.

  Global Instance: Equivalence (list_setequiv R).
  Proof.
    split.
    - by split.
    - intros ?? [??]. split; auto.
    - intros ??? [??] [??]. split; etrans; done.
  Qed.

  Global Instance list_setincl_subrel `(R' : relation A) :
    subrelation R R'  subrelation (list_setincl R) (list_setincl R').
Ralf Jung's avatar
Ralf Jung committed
71
  Proof using.
Ralf Jung's avatar
Ralf Jung committed
72 73 74 75 76 77
    intros HRR' al bl Hab. intros a Ha. destruct (Hab _ Ha) as (b & Hb & HR).
    exists b. split; first done. exact: HRR'.
  Qed.

  Global Instance list_setequiv_subrel `(R' : relation A) :
    subrelation R R'  subrelation (list_setequiv R) (list_setequiv R').
Ralf Jung's avatar
Ralf Jung committed
78
  Proof using. intros HRR' ?? [??]. split; exact: list_setincl_subrel. Qed.
Ralf Jung's avatar
Ralf Jung committed
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

  Global Instance list_setincl_perm : subrelation () (list_setincl R).
  Proof.
    intros al bl Hab a Ha. exists a. split; last done.
    by rewrite -Hab.
  Qed.

  Global Instance list_setincl_app l :
    Proper (list_setincl R ==> list_setincl R) (app l).
  Proof.
    intros al bl Hab a [Ha|Ha]%elem_of_app.
    - exists a. split; last done. apply elem_of_app. by left.
    - destruct (Hab _ Ha) as (b & Hb & HR). exists b. split; last done.
      apply elem_of_app. by right.
  Qed.

  Global Instance list_setequiv_app l :
    Proper (list_setequiv R ==> list_setequiv R) (app l).
  Proof. intros al bl [??]. split; apply list_setincl_app; done. Qed.

  Global Instance: subrelation () (flip (list_setincl R)).
  Proof. intros ???. apply list_setincl_perm. done. Qed.

  Global Instance list_agrees_setincl :
    Proper (flip (list_setincl R) ==> impl) (list_agrees R).
  Proof.
    move=> al bl /= Hab /list_agrees_alt Hal. apply (list_agrees_alt _) => a b Ha Hb.
    destruct (Hab _ Ha) as (a' & Ha' & HRa).
    destruct (Hab _ Hb) as (b' & Hb' & HRb).
    trans a'; first done. etrans; last done.
    eapply Hal; done.
  Qed.

  Global Instance list_agrees_setequiv :
    Proper (list_setequiv R ==> iff) (list_agrees R).
  Proof.
    intros ?? [??]. split; by apply: list_agrees_setincl.
  Qed.

  Lemma list_setincl_contains al bl :
    ( x, x  al  x  bl)  list_setincl R al bl.
  Proof. intros Hin a Ha. exists a. split; last done. naive_solver. Qed.

  Lemma list_setequiv_equiv al bl :
    ( x, x  al  x  bl)  list_setequiv R al bl.
  Proof.
    intros Hin. split; apply list_setincl_contains; naive_solver.
  Qed.

  Lemma list_agrees_contains al bl :
    ( x, x  bl  x  al) 
    list_agrees R al  list_agrees R bl.
  Proof. intros ?. by eapply (list_agrees_setincl _),list_setincl_contains. Qed.

  Lemma list_agrees_equiv al bl :
    ( x, x  bl  x  al) 
    list_agrees R al  list_agrees R bl.
  Proof. intros ?. by eapply (list_agrees_setequiv _), list_setequiv_equiv. Qed.

  Lemma list_setincl_singleton a b :
    R a b  list_setincl R [a] [b].
  Proof.
    intros HR c ->%elem_of_list_singleton. exists b. split; last done.
    apply elem_of_list_singleton. done.
  Qed.

  Lemma list_setincl_singleton_rev a b :
    list_setincl R [a] [b]  R a b.
Ralf Jung's avatar
Ralf Jung committed
147
  Proof using.
Ralf Jung's avatar
Ralf Jung committed
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    intros Hl. destruct (Hl a) as (? & ->%elem_of_list_singleton & HR); last done.
    by apply elem_of_list_singleton.
  Qed.

  Lemma list_setequiv_singleton a b :
    R a b  list_setequiv R [a] [b].
  Proof. intros ?. split; by apply list_setincl_singleton. Qed.

  Lemma list_agrees_iff_setincl al a :
    a  al  list_agrees R al  list_setincl R al [a].
  Proof.
    intros Hin. split.
    - move=>/list_agrees_alt Hl b Hb. exists a. split; first set_solver+. exact: Hl.
    - intros Hl. apply (list_agrees_alt _)=> b c Hb Hc.
      destruct (Hl _ Hb) as (? & ->%elem_of_list_singleton & ?).
      destruct (Hl _ Hc) as (? & ->%elem_of_list_singleton & ?).
      by trans a.
  Qed.

  Lemma list_setincl_singleton_in al a :
    a  al  list_setincl R [a] al.
  Proof.
    intros Hin b ->%elem_of_list_singleton. exists a. split; done.
  Qed.

  Global Instance list_setincl_ext : subrelation (Forall2 R) (list_setincl R).
  Proof.
    move=>al bl. induction 1.
    - intros ? []%elem_of_nil.
    - intros a [->|Ha]%elem_of_cons.
      + eexists. split; first constructor. done.
      + destruct (IHForall2 _ Ha) as (b & ? & ?).
        exists b. split; first by constructor. done.
  Qed.

  Global Instance list_setequiv_ext : subrelation (Forall2 R) (list_setequiv R).
  Proof.
    move=>al bl ?. split; apply list_setincl_ext; done.
  Qed.

  Lemma list_agrees_subrel `(R' : relation A) `{Equivalence _ R'} :
    subrelation R R'   l, list_agrees R l  list_agrees R' l.
  Proof. move=> HR l /list_agrees_alt Hl. apply (list_agrees_alt _)=> a b Ha Hb. by apply HR, Hl. Qed.

  Section fmap.
    Context `(R' : relation B) (f : A  B) {Hf: Proper (R ==> R') f}.
Ralf Jung's avatar
Ralf Jung committed
194
    Collection Hyps := Type Hf.
195
    Local Set Default Proof Using "Hyps".
196

Ralf Jung's avatar
Ralf Jung committed
197 198
    Global Instance list_setincl_fmap :
      Proper (list_setincl R ==> list_setincl R') (fmap f).
Ralf Jung's avatar
Ralf Jung committed
199
    Proof using Hf.
Ralf Jung's avatar
Ralf Jung committed
200 201 202 203
      intros al bl Hab a' (a & -> & Ha)%elem_of_list_fmap.
      destruct (Hab _ Ha) as (b & Hb & HR). exists (f b).
      split; first eapply elem_of_list_fmap; eauto.
    Qed.
204

Ralf Jung's avatar
Ralf Jung committed
205 206
    Global Instance list_setequiv_fmap :
      Proper (list_setequiv R ==> list_setequiv R') (fmap f).
Ralf Jung's avatar
Ralf Jung committed
207
    Proof using Hf. intros ?? [??]. split; apply list_setincl_fmap; done. Qed.
Ralf Jung's avatar
Ralf Jung committed
208 209 210

    Lemma list_agrees_fmap `{Equivalence _ R'} al :
      list_agrees R al  list_agrees R' (f <$> al).
211
    Proof using Type*.
Ralf Jung's avatar
Ralf Jung committed
212
      move=> /list_agrees_alt Hl. apply (list_agrees_alt R') => a' b'.
Ralf Jung's avatar
Ralf Jung committed
213 214 215 216 217
      intros (a & -> & Ha)%elem_of_list_fmap (b & -> & Hb)%elem_of_list_fmap.
      apply Hf. exact: Hl.
    Qed.
  End fmap.
End list_theory.
Robbert Krebbers's avatar
Robbert Krebbers committed
218 219

Section agree.
220
Local Set Default Proof Using "Type".
221
Context {A : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
222

Ralf Jung's avatar
Ralf Jung committed
223
Definition agree_list (x : agree A) := agree_car x :: agree_with x.
224

Ralf Jung's avatar
Ralf Jung committed
225 226 227 228
Instance agree_validN : ValidN (agree A) := λ n x,
  list_agrees (dist n) (agree_list x).
Instance agree_valid : Valid (agree A) := λ x,
  list_agrees (equiv) (agree_list x).
229

230
Instance agree_dist : Dist (agree A) := λ n x y,
Ralf Jung's avatar
Ralf Jung committed
231 232 233 234 235 236 237
  list_setequiv (dist n) (agree_list x) (agree_list y).
Instance agree_equiv : Equiv (agree A) := λ x y,
   n, list_setequiv (dist n) (agree_list x) (agree_list y).

Definition agree_dist_incl n (x y : agree A) :=
  list_setincl (dist n) (agree_list x) (agree_list y).

238
Definition agree_ofe_mixin : OfeMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
239 240
Proof.
  split.
Ralf Jung's avatar
Ralf Jung committed
241 242 243 244 245 246
  - intros x y; split; intros Hxy; done.
  - split; rewrite /dist /agree_dist; intros ? *.
    + reflexivity.
    + by symmetry.
    + intros. etrans; eassumption.
  - intros ???. apply list_setequiv_subrel=>??. apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
247
Qed.
248 249
Canonical Structure agreeC := OfeT (agree A) agree_ofe_mixin.

250
Program Instance agree_op : Op (agree A) := λ x y,
251
  {| agree_car := agree_car x;
Ralf Jung's avatar
Ralf Jung committed
252
     agree_with := agree_with x ++ agree_car y :: agree_with y |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
253
Instance agree_pcore : PCore (agree A) := Some.
254

255
Instance: Comm () (@op (agree A) _).
Ralf Jung's avatar
Ralf Jung committed
256 257
Proof. intros x y n. apply: list_setequiv_equiv. set_solver. Qed.

Ralf Jung's avatar
...  
Ralf Jung committed
258
Lemma agree_idemp (x : agree A) : x  x  x.
Ralf Jung's avatar
Ralf Jung committed
259 260
Proof. intros n. apply: list_setequiv_equiv. set_solver. Qed.

261 262
Instance:  n : nat, Proper (dist n ==> impl) (@validN (agree A) _ n).
Proof.
Ralf Jung's avatar
Ralf Jung committed
263 264
  intros n x y. rewrite /dist /validN /agree_dist /agree_validN.
  by intros ->.
265
Qed.
Ralf Jung's avatar
Ralf Jung committed
266 267 268 269 270 271
Instance:  n : nat, Proper (equiv ==> iff) (@validN (agree A) _ n).
Proof.
  intros n ???. assert (x {n} y) as Hxy by by apply equiv_dist.
  split; rewrite Hxy; done.
Qed.

272
Instance:  x : agree A, NonExpansive (op x).
Robbert Krebbers's avatar
Robbert Krebbers committed
273
Proof.
274
  intros x n y1 y2. rewrite /dist /agree_dist /agree_list /=. 
Ralf Jung's avatar
Ralf Jung committed
275
  rewrite !app_comm_cons. apply: list_setequiv_app.
Robbert Krebbers's avatar
Robbert Krebbers committed
276
Qed.
277
Instance: NonExpansive2 (@op (agree A) _).
278
Proof. by intros n x1 x2 Hx y1 y2 Hy; rewrite Hy !(comm _ _ y2) Hx. Qed.
279
Instance: Proper (() ==> () ==> ()) op := ne_proper_2 _.
280
Instance: Assoc () (@op (agree A) _).
Ralf Jung's avatar
Ralf Jung committed
281
Proof. intros x y z n. apply: list_setequiv_equiv. set_solver. Qed.
282

Robbert Krebbers's avatar
Robbert Krebbers committed
283 284 285 286 287
Lemma agree_included (x y : agree A) : x  y  y  x  y.
Proof.
  split; [|by intros ?; exists y].
  by intros [z Hz]; rewrite Hz assoc agree_idemp.
Qed.
Ralf Jung's avatar
Ralf Jung committed
288 289 290 291 292 293 294 295 296 297 298 299
Lemma agree_op_inv_inclN n x1 x2 : {n} (x1  x2)  agree_dist_incl n x1 x2.
Proof.
  rewrite /validN /= => /list_agrees_alt Hv a /elem_of_cons Ha. exists (agree_car x2).
  split; first by constructor. eapply Hv.
  - simpl. destruct Ha as [->|Ha]; set_solver.
  - simpl. set_solver+.
Qed.
Lemma agree_op_invN n (x1 x2 : agree A) : {n} (x1  x2)  x1 {n} x2.
Proof.
  intros Hxy. split; apply agree_op_inv_inclN; first done. by rewrite comm.
Qed.

300 301 302
Lemma agree_valid_includedN n (x y : agree A) : {n} y  x {n} y  x {n} y.
Proof.
  move=> Hval [z Hy]; move: Hval; rewrite Hy.
Ralf Jung's avatar
Ralf Jung committed
303
  by move=> /agree_op_invN->; rewrite agree_idemp.
304 305
Qed.

306
Definition agree_cmra_mixin : CMRAMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
307
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
308
  apply cmra_total_mixin; try apply _ || by eauto.
Ralf Jung's avatar
Ralf Jung committed
309 310 311 312 313 314
  - move=>x. split.
    + move=>/list_agrees_alt Hx n. apply (list_agrees_alt _)=> a b Ha Hb.
      apply equiv_dist, Hx; done.
    + intros Hx. apply (list_agrees_alt _)=> a b Ha Hb.
      apply equiv_dist=>n. eapply (list_agrees_alt _); first (by apply Hx); done.
  - intros n x. apply (list_agrees_subrel _ _)=>??. apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
315
  - intros x. apply agree_idemp.
Ralf Jung's avatar
Ralf Jung committed
316
  - intros ??? Hl. apply: list_agrees_contains Hl. set_solver.
317
  - intros n x y1 y2 Hval Hx; exists x, x; simpl; split.
318
    + by rewrite agree_idemp.
Ralf Jung's avatar
Ralf Jung committed
319
    + by move: Hval; rewrite Hx; move=> /agree_op_invN->; rewrite agree_idemp.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
Qed.
321
Canonical Structure agreeR : cmraT :=
322
  CMRAT (agree A) agree_ofe_mixin agree_cmra_mixin.
323

Robbert Krebbers's avatar
Robbert Krebbers committed
324 325
Global Instance agree_total : CMRATotal agreeR.
Proof. rewrite /CMRATotal; eauto. Qed.
326
Global Instance agree_persistent (x : agree A) : Persistent x.
Robbert Krebbers's avatar
Robbert Krebbers committed
327
Proof. by constructor. Qed.
328

Ralf Jung's avatar
Ralf Jung committed
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
Lemma agree_op_inv (x1 x2 : agree A) :  (x1  x2)  x1  x2.
Proof.
  intros ?. apply equiv_dist=>n. by apply agree_op_invN, cmra_valid_validN.
Qed.

Global Instance agree_discrete :
  Discrete A  CMRADiscrete agreeR.
Proof.
  intros HD. split.
  - intros x y Hxy n. eapply list_setequiv_subrel; last exact Hxy. clear -HD.
    intros x y ?. apply equiv_dist, HD. done.
  - rewrite /valid /cmra_valid /agree_valid /validN /cmra_validN /agree_validN /=.
    move=> x. apply (list_agrees_subrel _ _). clear -HD.
    intros x y. apply HD.
Qed.

Definition to_agree (x : A) : agree A :=
  {| agree_car := x; agree_with := [] |}.
347

348
Global Instance to_agree_ne : NonExpansive to_agree.
Ralf Jung's avatar
Ralf Jung committed
349 350 351 352
Proof.
  intros x1 x2 Hx; rewrite /= /dist /agree_dist /=.
  exact: list_setequiv_singleton.
Qed.
353
Global Instance to_agree_proper : Proper (() ==> ()) to_agree := ne_proper _.
354

Ralf Jung's avatar
Ralf Jung committed
355 356 357 358 359 360
Global Instance to_agree_injN n : Inj (dist n) (dist n) (to_agree).
Proof. intros a b [Hxy%list_setincl_singleton_rev _]. done. Qed. 
Global Instance to_agree_inj : Inj () () (to_agree).
Proof.
  intros a b ?. apply equiv_dist=>n. apply to_agree_injN. by apply equiv_dist.
Qed.
361

362
Lemma to_agree_uninjN n (x : agree A) : {n} x   y : A, to_agree y {n} x.
363
Proof.
Ralf Jung's avatar
Ralf Jung committed
364 365 366 367 368 369
  intros Hl. exists (agree_car x). rewrite /dist /agree_dist /=.
  split.
  - apply: list_setincl_singleton_in. set_solver+.
  - apply (list_agrees_iff_setincl _); first set_solver+. done.
Qed.

370 371 372 373 374 375 376 377 378 379
Lemma to_agree_uninj (x : agree A) :  x   y : A, to_agree y  x.
Proof.
  intros Hl. exists (agree_car x). rewrite /dist /agree_dist /=.
  split.
  - apply: list_setincl_singleton_in. set_solver+.
  - apply (list_agrees_iff_setincl _); first set_solver+.
    eapply list_agrees_subrel; last exact: Hl; [apply _..|].
    intros ???. by apply equiv_dist.
Qed.

Ralf Jung's avatar
Ralf Jung committed
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
Lemma to_agree_included (a b : A) : to_agree a  to_agree b  a  b.
Proof.
  split.
  - intros (x & Heq). apply equiv_dist=>n. destruct (Heq n) as [_ Hincl].
    (* TODO: This could become a generic lemma about list_setincl. *)
    destruct (Hincl a) as (? & ->%elem_of_list_singleton & ?); first set_solver+.
    done.
  - intros Hab. rewrite Hab. eexists. symmetry. eapply agree_idemp.
Qed.

Lemma to_agree_comp_valid (a b : A) :  (to_agree a  to_agree b)  a  b.
Proof.
  split.
  - (* TODO: can this be derived from other stuff?  Otherwise, should probably become sth. generic about list_agrees. *)
    intros Hv. apply Hv; simpl; set_solver.
  - intros ->. rewrite agree_idemp. done.
396
Qed.
397 398

(** Internalized properties *)
399
Lemma agree_equivI {M} a b : to_agree a  to_agree b  (a  b : uPred M).
400
Proof.
Ralf Jung's avatar
Ralf Jung committed
401 402 403
  uPred.unseal. do 2 split.
  - intros Hx. exact: to_agree_injN.
  - intros Hx. exact: to_agree_ne.
404
Qed.
405
Lemma agree_validI {M} x y :  (x  y)  (x  y : uPred M).
Ralf Jung's avatar
Ralf Jung committed
406
Proof. uPred.unseal; split=> r n _ ?; by apply: agree_op_invN. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
407 408
End agree.

409
Instance: Params (@to_agree) 1.
410
Arguments agreeC : clear implicits.
411
Arguments agreeR : clear implicits.
412

413
Program Definition agree_map {A B} (f : A  B) (x : agree A) : agree B :=
Ralf Jung's avatar
Ralf Jung committed
414
  {| agree_car := f (agree_car x); agree_with := f <$> (agree_with x) |}.
415
Lemma agree_map_id {A} (x : agree A) : agree_map id x = x.
Ralf Jung's avatar
Ralf Jung committed
416
Proof. rewrite /agree_map /= list_fmap_id. by destruct x. Qed.
417 418
Lemma agree_map_compose {A B C} (f : A  B) (g : B  C) (x : agree A) :
  agree_map (g  f) x = agree_map g (agree_map f x).
Ralf Jung's avatar
Ralf Jung committed
419
Proof. rewrite /agree_map /= list_fmap_compose. done. Qed.
420

Robbert Krebbers's avatar
Robbert Krebbers committed
421
Section agree_map.
422
  Context {A B : ofeT} (f : A  B) `{Hf: NonExpansive f}.
Ralf Jung's avatar
Ralf Jung committed
423
  Collection Hyps := Type Hf.
424
  Instance agree_map_ne : NonExpansive (agree_map f).
Ralf Jung's avatar
Ralf Jung committed
425
  Proof using Hyps.
426
    intros n x y Hxy.
Ralf Jung's avatar
Ralf Jung committed
427 428 429
    change (list_setequiv (dist n)(f <$> (agree_list x))(f <$> (agree_list y))).
    eapply list_setequiv_fmap; last exact Hxy. apply _. 
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
430
  Instance agree_map_proper : Proper (() ==> ()) (agree_map f) := ne_proper _.
Ralf Jung's avatar
Ralf Jung committed
431

432 433
  Lemma agree_map_ext (g : A  B) x :
    ( x, f x  g x)  agree_map f x  agree_map g x.
Ralf Jung's avatar
Ralf Jung committed
434 435 436 437 438 439
  Proof.
    intros Hfg n. apply: list_setequiv_ext.
    change (f <$> (agree_list x) {n} g <$> (agree_list x)).
    apply list_fmap_ext_ne=>y. by apply equiv_dist.
  Qed.

440
  Global Instance agree_map_monotone : CMRAMonotone (agree_map f).
Ralf Jung's avatar
Ralf Jung committed
441
  Proof using Hyps.
Robbert Krebbers's avatar
Robbert Krebbers committed
442
    split; first apply _.
Ralf Jung's avatar
Ralf Jung committed
443 444 445
    - intros n x. rewrite /cmra_validN /validN /= /agree_validN /= => ?.
      change (list_agrees (dist n) (f <$> agree_list x)).
      eapply (list_agrees_fmap _ _ _); done.
Robbert Krebbers's avatar
Robbert Krebbers committed
446
    - intros x y; rewrite !agree_included=> ->.
Ralf Jung's avatar
Ralf Jung committed
447 448
      rewrite /equiv /agree_equiv /agree_map /agree_op /agree_list /=.
      rewrite !fmap_app=>n. apply: list_setequiv_equiv. set_solver+.
Robbert Krebbers's avatar
Robbert Krebbers committed
449 450
  Qed.
End agree_map.
Robbert Krebbers's avatar
Robbert Krebbers committed
451

452 453
Definition agreeC_map {A B} (f : A -n> B) : agreeC A -n> agreeC B :=
  CofeMor (agree_map f : agreeC A  agreeC B).
454
Instance agreeC_map_ne A B : NonExpansive (@agreeC_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
455
Proof.
456
  intros n f g Hfg x. apply: list_setequiv_ext.
Ralf Jung's avatar
Ralf Jung committed
457 458
  change (f <$> (agree_list x) {n} g <$> (agree_list x)).
  apply list_fmap_ext_ne. done.
Robbert Krebbers's avatar
Robbert Krebbers committed
459
Qed.
Ralf Jung's avatar
Ralf Jung committed
460

461 462 463 464
Program Definition agreeRF (F : cFunctor) : rFunctor := {|
  rFunctor_car A B := agreeR (cFunctor_car F A B);
  rFunctor_map A1 A2 B1 B2 fg := agreeC_map (cFunctor_map F fg)
|}.
465 466 467
Next Obligation.
  intros ? A1 A2 B1 B2 n ???; simpl. by apply agreeC_map_ne, cFunctor_ne.
Qed.
468 469 470 471 472 473 474 475
Next Obligation.
  intros F A B x; simpl. rewrite -{2}(agree_map_id x).
  apply agree_map_ext=>y. by rewrite cFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x; simpl. rewrite -agree_map_compose.
  apply agree_map_ext=>y; apply cFunctor_compose.
Qed.
476 477 478 479 480 481 482

Instance agreeRF_contractive F :
  cFunctorContractive F  rFunctorContractive (agreeRF F).
Proof.
  intros ? A1 A2 B1 B2 n ???; simpl.
  by apply agreeC_map_ne, cFunctor_contractive.
Qed.