interface.v 23.6 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From iris.algebra Require Export ofe.
2
Set Primitive Projections.
Robbert Krebbers's avatar
Robbert Krebbers committed
3 4 5 6 7 8 9 10 11

Reserved Notation "P ⊢ Q" (at level 99, Q at level 200, right associativity).
Reserved Notation "'emp'".
Reserved Notation "'⌜' φ '⌝'" (at level 1, φ at level 200, format "⌜ φ ⌝").
Reserved Notation "P ∗ Q" (at level 80, right associativity).
Reserved Notation "P -∗ Q" (at level 99, Q at level 200, right associativity).
Reserved Notation "▷ P" (at level 20, right associativity).

Section bi_mixin.
12
  Context {PROP : Type} `{Dist PROP, Equiv PROP} (prop_ofe_mixin : OfeMixin PROP).
Robbert Krebbers's avatar
Robbert Krebbers committed
13 14 15 16 17 18 19 20 21 22 23
  Context (bi_entails : PROP  PROP  Prop).
  Context (bi_emp : PROP).
  Context (bi_pure : Prop  PROP).
  Context (bi_and : PROP  PROP  PROP).
  Context (bi_or : PROP  PROP  PROP).
  Context (bi_impl : PROP  PROP  PROP).
  Context (bi_forall :  A, (A  PROP)  PROP).
  Context (bi_exist :  A, (A  PROP)  PROP).
  Context (bi_internal_eq :  A : ofeT, A  A  PROP).
  Context (bi_sep : PROP  PROP  PROP).
  Context (bi_wand : PROP  PROP  PROP).
24
  Context (bi_plainly : PROP  PROP).
Robbert Krebbers's avatar
Robbert Krebbers committed
25
  Context (bi_persistently : PROP  PROP).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
26
  Context (sbi_later : PROP  PROP).
Robbert Krebbers's avatar
Robbert Krebbers committed
27 28 29 30 31

  Local Infix "⊢" := bi_entails.
  Local Notation "'emp'" := bi_emp.
  Local Notation "'True'" := (bi_pure True).
  Local Notation "'False'" := (bi_pure False).
32
  Local Notation "'⌜' φ '⌝'" := (bi_pure φ%type%stdpp).
Robbert Krebbers's avatar
Robbert Krebbers committed
33 34 35 36 37 38 39 40 41 42
  Local Infix "∧" := bi_and.
  Local Infix "∨" := bi_or.
  Local Infix "→" := bi_impl.
  Local Notation "∀ x .. y , P" :=
    (bi_forall _ (λ x, .. (bi_forall _ (λ y, P)) ..)).
  Local Notation "∃ x .. y , P" :=
    (bi_exist _ (λ x, .. (bi_exist _ (λ y, P)) ..)).
  Local Notation "x ≡ y" := (bi_internal_eq _ x y).
  Local Infix "∗" := bi_sep.
  Local Infix "-∗" := bi_wand.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
43
  Local Notation "▷ P" := (sbi_later P).
Robbert Krebbers's avatar
Robbert Krebbers committed
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

  Record BIMixin := {
    bi_mixin_entails_po : PreOrder bi_entails;
    bi_mixin_equiv_spec P Q : equiv P Q  (P  Q)  (Q  P);

    (* Non-expansiveness *)
    bi_mixin_pure_ne n : Proper (iff ==> dist n) bi_pure;
    bi_mixin_and_ne : NonExpansive2 bi_and;
    bi_mixin_or_ne : NonExpansive2 bi_or;
    bi_mixin_impl_ne : NonExpansive2 bi_impl;
    bi_mixin_forall_ne A n :
      Proper (pointwise_relation _ (dist n) ==> dist n) (bi_forall A);
    bi_mixin_exist_ne A n :
      Proper (pointwise_relation _ (dist n) ==> dist n) (bi_exist A);
    bi_mixin_sep_ne : NonExpansive2 bi_sep;
    bi_mixin_wand_ne : NonExpansive2 bi_wand;
60
    bi_mixin_plainly_ne : NonExpansive bi_plainly;
Robbert Krebbers's avatar
Robbert Krebbers committed
61
    bi_mixin_persistently_ne : NonExpansive bi_persistently;
62
    bi_mixin_internal_eq_ne (A : ofeT) : NonExpansive2 (bi_internal_eq A);
Robbert Krebbers's avatar
Robbert Krebbers committed
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

    (* Higher-order logic *)
    bi_mixin_pure_intro P (φ : Prop) : φ  P   φ ;
    bi_mixin_pure_elim' (φ : Prop) P : (φ  True  P)   φ   P;
    bi_mixin_pure_forall_2 {A} (φ : A  Prop) : ( a,  φ a )    a, φ a ;

    bi_mixin_and_elim_l P Q : P  Q  P;
    bi_mixin_and_elim_r P Q : P  Q  Q;
    bi_mixin_and_intro P Q R : (P  Q)  (P  R)  P  Q  R;

    bi_mixin_or_intro_l P Q : P  P  Q;
    bi_mixin_or_intro_r P Q : Q  P  Q;
    bi_mixin_or_elim P Q R : (P  R)  (Q  R)  P  Q  R;

    bi_mixin_impl_intro_r P Q R : (P  Q  R)  P  Q  R;
    bi_mixin_impl_elim_l' P Q R : (P  Q  R)  P  Q  R;

    bi_mixin_forall_intro {A} P (Ψ : A  PROP) : ( a, P  Ψ a)  P   a, Ψ a;
    bi_mixin_forall_elim {A} {Ψ : A  PROP} a : ( a, Ψ a)  Ψ a;

    bi_mixin_exist_intro {A} {Ψ : A  PROP} a : Ψ a   a, Ψ a;
    bi_mixin_exist_elim {A} (Φ : A  PROP) Q : ( a, Φ a  Q)  ( a, Φ a)  Q;

    (* Equality *)
    bi_mixin_internal_eq_refl {A : ofeT} P (a : A) : P  a  a;
    bi_mixin_internal_eq_rewrite {A : ofeT} a b (Ψ : A  PROP) :
      NonExpansive Ψ  a  b  Ψ a  Ψ b;
90
    bi_mixin_fun_ext {A} {B : A  ofeT} (f g : ofe_fun B) : ( x, f x  g x)  f  g;
Robbert Krebbers's avatar
Robbert Krebbers committed
91 92 93 94 95 96 97 98 99 100 101 102
    bi_mixin_sig_eq {A : ofeT} (P : A  Prop) (x y : sig P) : `x  `y  x  y;
    bi_mixin_discrete_eq_1 {A : ofeT} (a b : A) : Discrete a  a  b  a  b;

    (* BI connectives *)
    bi_mixin_sep_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q';
    bi_mixin_emp_sep_1 P : P  emp  P;
    bi_mixin_emp_sep_2 P : emp  P  P;
    bi_mixin_sep_comm' P Q : P  Q  Q  P;
    bi_mixin_sep_assoc' P Q R : (P  Q)  R  P  (Q  R);
    bi_mixin_wand_intro_r P Q R : (P  Q  R)  P  Q - R;
    bi_mixin_wand_elim_l' P Q R : (P  Q - R)  P  Q  R;

103 104 105 106 107 108 109 110 111 112 113
    (* Plainly *)
    bi_mixin_plainly_mono P Q : (P  Q)  bi_plainly P  bi_plainly Q;
    bi_mixin_plainly_elim_persistently P : bi_plainly P  bi_persistently P;
    bi_mixin_plainly_idemp_2 P : bi_plainly P  bi_plainly (bi_plainly P);

    bi_mixin_plainly_forall_2 {A} (Ψ : A  PROP) :
      ( a, bi_plainly (Ψ a))  bi_plainly ( a, Ψ a);

    bi_mixin_prop_ext P Q : bi_plainly ((P  Q)  (Q  P)) 
      bi_internal_eq (OfeT PROP prop_ofe_mixin) P Q;

114 115 116
    (* The following two laws are very similar, and indeed they hold
       not just for □ and ■, but for any modality defined as
       `M P n x := ∀ y, R x y → P n y`. *)
117 118 119 120 121 122 123 124
    bi_mixin_persistently_impl_plainly P Q :
      (bi_plainly P  bi_persistently Q)  bi_persistently (bi_plainly P  Q);
    bi_mixin_plainly_impl_plainly P Q :
      (bi_plainly P  bi_plainly Q)  bi_plainly (bi_plainly P  Q);

    bi_mixin_plainly_emp_intro P : P  bi_plainly emp;
    bi_mixin_plainly_absorbing P Q : bi_plainly P  Q  bi_plainly P;

Robbert Krebbers's avatar
Robbert Krebbers committed
125
    (* Persistently *)
126 127 128 129
    bi_mixin_persistently_mono P Q :
      (P  Q)  bi_persistently P  bi_persistently Q;
    bi_mixin_persistently_idemp_2 P :
      bi_persistently P  bi_persistently (bi_persistently P);
130 131
    bi_mixin_plainly_persistently_1 P :
      bi_plainly (bi_persistently P)  bi_plainly P;
Robbert Krebbers's avatar
Robbert Krebbers committed
132 133

    bi_mixin_persistently_forall_2 {A} (Ψ : A  PROP) :
134
      ( a, bi_persistently (Ψ a))  bi_persistently ( a, Ψ a);
Robbert Krebbers's avatar
Robbert Krebbers committed
135
    bi_mixin_persistently_exist_1 {A} (Ψ : A  PROP) :
136
      bi_persistently ( a, Ψ a)   a, bi_persistently (Ψ a);
Robbert Krebbers's avatar
Robbert Krebbers committed
137

138 139 140 141
    bi_mixin_persistently_absorbing P Q :
      bi_persistently P  Q  bi_persistently P;
    bi_mixin_persistently_and_sep_elim P Q :
      bi_persistently P  Q  (emp  P)  Q;
Robbert Krebbers's avatar
Robbert Krebbers committed
142 143 144
  }.

  Record SBIMixin := {
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
145
    sbi_mixin_later_contractive : Contractive sbi_later;
Robbert Krebbers's avatar
Robbert Krebbers committed
146 147 148 149 150 151 152 153 154 155 156 157

    sbi_mixin_later_eq_1 {A : ofeT} (x y : A) : Next x  Next y   (x  y);
    sbi_mixin_later_eq_2 {A : ofeT} (x y : A) :  (x  y)  Next x  Next y;

    sbi_mixin_later_mono P Q : (P  Q)   P   Q;
    sbi_mixin_löb P : ( P  P)  P;

    sbi_mixin_later_forall_2 {A} (Φ : A  PROP) : ( a,  Φ a)    a, Φ a;
    sbi_mixin_later_exist_false {A} (Φ : A  PROP) :
      (  a, Φ a)   False  ( a,  Φ a);
    sbi_mixin_later_sep_1 P Q :  (P  Q)   P   Q;
    sbi_mixin_later_sep_2 P Q :  P   Q   (P  Q);
158 159
    sbi_mixin_later_plainly_1 P :  bi_plainly P  bi_plainly ( P);
    sbi_mixin_later_plainly_2 P : bi_plainly ( P)   bi_plainly P;
160 161 162 163
    sbi_mixin_later_persistently_1 P :
       bi_persistently P  bi_persistently ( P);
    sbi_mixin_later_persistently_2 P :
      bi_persistently ( P)   bi_persistently P;
Robbert Krebbers's avatar
Robbert Krebbers committed
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

    sbi_mixin_later_false_em P :  P   False  ( False  P);
  }.
End bi_mixin.

Structure bi := BI {
  bi_car :> Type;
  bi_dist : Dist bi_car;
  bi_equiv : Equiv bi_car;
  bi_entails : bi_car  bi_car  Prop;
  bi_emp : bi_car;
  bi_pure : Prop  bi_car;
  bi_and : bi_car  bi_car  bi_car;
  bi_or : bi_car  bi_car  bi_car;
  bi_impl : bi_car  bi_car  bi_car;
  bi_forall :  A, (A  bi_car)  bi_car;
  bi_exist :  A, (A  bi_car)  bi_car;
  bi_internal_eq :  A : ofeT, A  A  bi_car;
  bi_sep : bi_car  bi_car  bi_car;
  bi_wand : bi_car  bi_car  bi_car;
184
  bi_plainly : bi_car  bi_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
185 186
  bi_persistently : bi_car  bi_car;
  bi_ofe_mixin : OfeMixin bi_car;
187 188 189
  bi_bi_mixin : BIMixin bi_ofe_mixin bi_entails bi_emp bi_pure bi_and bi_or
                        bi_impl bi_forall bi_exist bi_internal_eq
                        bi_sep bi_wand bi_plainly bi_persistently;
Robbert Krebbers's avatar
Robbert Krebbers committed
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
}.

Coercion bi_ofeC (PROP : bi) : ofeT := OfeT PROP (bi_ofe_mixin PROP).
Canonical Structure bi_ofeC.

Instance: Params (@bi_entails) 1.
Instance: Params (@bi_emp) 1.
Instance: Params (@bi_pure) 1.
Instance: Params (@bi_and) 1.
Instance: Params (@bi_or) 1.
Instance: Params (@bi_impl) 1.
Instance: Params (@bi_forall) 2.
Instance: Params (@bi_exist) 2.
Instance: Params (@bi_internal_eq) 2.
Instance: Params (@bi_sep) 1.
Instance: Params (@bi_wand) 1.
206
Instance: Params (@bi_plainly) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
207 208 209 210 211 212 213 214
Instance: Params (@bi_persistently) 1.

Delimit Scope bi_scope with I.
Arguments bi_car : simpl never.
Arguments bi_dist : simpl never.
Arguments bi_equiv : simpl never.
Arguments bi_entails {PROP} _%I _%I : simpl never, rename.
Arguments bi_emp {PROP} : simpl never, rename.
215
Arguments bi_pure {PROP} _%stdpp : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
216 217 218 219 220 221 222 223
Arguments bi_and {PROP} _%I _%I : simpl never, rename.
Arguments bi_or {PROP} _%I _%I : simpl never, rename.
Arguments bi_impl {PROP} _%I _%I : simpl never, rename.
Arguments bi_forall {PROP _} _%I : simpl never, rename.
Arguments bi_exist {PROP _} _%I : simpl never, rename.
Arguments bi_internal_eq {PROP _} _ _ : simpl never, rename.
Arguments bi_sep {PROP} _%I _%I : simpl never, rename.
Arguments bi_wand {PROP} _%I _%I : simpl never, rename.
224
Arguments bi_plainly {PROP} _%I : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
Arguments bi_persistently {PROP} _%I : simpl never, rename.

Structure sbi := SBI {
  sbi_car :> Type;
  sbi_dist : Dist sbi_car;
  sbi_equiv : Equiv sbi_car;
  sbi_entails : sbi_car  sbi_car  Prop;
  sbi_emp : sbi_car;
  sbi_pure : Prop  sbi_car;
  sbi_and : sbi_car  sbi_car  sbi_car;
  sbi_or : sbi_car  sbi_car  sbi_car;
  sbi_impl : sbi_car  sbi_car  sbi_car;
  sbi_forall :  A, (A  sbi_car)  sbi_car;
  sbi_exist :  A, (A  sbi_car)  sbi_car;
  sbi_internal_eq :  A : ofeT, A  A  sbi_car;
  sbi_sep : sbi_car  sbi_car  sbi_car;
  sbi_wand : sbi_car  sbi_car  sbi_car;
242
  sbi_plainly : sbi_car  sbi_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
243
  sbi_persistently : sbi_car  sbi_car;
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
244
  sbi_later : sbi_car  sbi_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
245
  sbi_ofe_mixin : OfeMixin sbi_car;
246 247 248
  sbi_bi_mixin : BIMixin sbi_ofe_mixin sbi_entails sbi_emp sbi_pure sbi_and
                         sbi_or sbi_impl sbi_forall sbi_exist sbi_internal_eq
                         sbi_sep sbi_wand sbi_plainly sbi_persistently;
249
  sbi_sbi_mixin : SBIMixin sbi_entails sbi_pure sbi_or sbi_impl
Robbert Krebbers's avatar
Robbert Krebbers committed
250
                           sbi_forall sbi_exist sbi_internal_eq
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
251
                           sbi_sep sbi_plainly sbi_persistently sbi_later;
Robbert Krebbers's avatar
Robbert Krebbers committed
252 253 254 255 256
}.

Arguments sbi_car : simpl never.
Arguments sbi_entails {PROP} _%I _%I : simpl never, rename.
Arguments bi_emp {PROP} : simpl never, rename.
257
Arguments bi_pure {PROP} _%stdpp : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
258 259 260 261 262 263 264 265
Arguments bi_and {PROP} _%I _%I : simpl never, rename.
Arguments bi_or {PROP} _%I _%I : simpl never, rename.
Arguments bi_impl {PROP} _%I _%I : simpl never, rename.
Arguments bi_forall {PROP _} _%I : simpl never, rename.
Arguments bi_exist {PROP _} _%I : simpl never, rename.
Arguments bi_internal_eq {PROP _} _ _ : simpl never, rename.
Arguments bi_sep {PROP} _%I _%I : simpl never, rename.
Arguments bi_wand {PROP} _%I _%I : simpl never, rename.
266
Arguments bi_plainly {PROP} _%I : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
267 268 269 270 271 272 273 274 275 276 277 278 279
Arguments bi_persistently {PROP} _%I : simpl never, rename.

Coercion sbi_ofeC (PROP : sbi) : ofeT := OfeT PROP (sbi_ofe_mixin PROP).
Canonical Structure sbi_ofeC.
Coercion sbi_bi (PROP : sbi) : bi :=
  {| bi_ofe_mixin := sbi_ofe_mixin PROP; bi_bi_mixin := sbi_bi_mixin PROP |}.
Canonical Structure sbi_bi.

Arguments sbi_car : simpl never.
Arguments sbi_dist : simpl never.
Arguments sbi_equiv : simpl never.
Arguments sbi_entails {PROP} _%I _%I : simpl never, rename.
Arguments sbi_emp {PROP} : simpl never, rename.
280
Arguments sbi_pure {PROP} _%stdpp : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
281 282 283 284 285 286 287 288
Arguments sbi_and {PROP} _%I _%I : simpl never, rename.
Arguments sbi_or {PROP} _%I _%I : simpl never, rename.
Arguments sbi_impl {PROP} _%I _%I : simpl never, rename.
Arguments sbi_forall {PROP _} _%I : simpl never, rename.
Arguments sbi_exist {PROP _} _%I : simpl never, rename.
Arguments sbi_internal_eq {PROP _} _ _ : simpl never, rename.
Arguments sbi_sep {PROP} _%I _%I : simpl never, rename.
Arguments sbi_wand {PROP} _%I _%I : simpl never, rename.
289
Arguments sbi_plainly {PROP} _%I : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
290
Arguments sbi_persistently {PROP} _%I : simpl never, rename.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
291
Arguments sbi_later {PROP} _%I : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
292 293 294 295 296

Hint Extern 0 (bi_entails _ _) => reflexivity.
Instance bi_rewrite_relation (PROP : bi) : RewriteRelation (@bi_entails PROP).
Instance bi_inhabited {PROP : bi} : Inhabited PROP := populate (bi_pure True).

297 298
Notation "P ⊢ Q" := (bi_entails P%I Q%I) : stdpp_scope.
Notation "(⊢)" := bi_entails (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
299 300

Notation "P ⊣⊢ Q" := (equiv (A:=bi_car _) P%I Q%I)
301 302
  (at level 95, no associativity) : stdpp_scope.
Notation "(⊣⊢)" := (equiv (A:=bi_car _)) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
303

304
Notation "P -∗ Q" := (P  Q) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
305 306

Notation "'emp'" := (bi_emp) : bi_scope.
307
Notation "'⌜' φ '⌝'" := (bi_pure φ%type%stdpp) : bi_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
Notation "'True'" := (bi_pure True) : bi_scope.
Notation "'False'" := (bi_pure False) : bi_scope.
Infix "∧" := bi_and : bi_scope.
Notation "(∧)" := bi_and (only parsing) : bi_scope.
Infix "∨" := bi_or : bi_scope.
Notation "(∨)" := bi_or (only parsing) : bi_scope.
Infix "→" := bi_impl : bi_scope.
Infix "∗" := bi_sep : bi_scope.
Notation "(∗)" := bi_sep (only parsing) : bi_scope.
Notation "P -∗ Q" := (bi_wand P Q) : bi_scope.
Notation "∀ x .. y , P" :=
  (bi_forall (λ x, .. (bi_forall (λ y, P)) ..)%I) : bi_scope.
Notation "∃ x .. y , P" :=
  (bi_exist (λ x, .. (bi_exist (λ y, P)) ..)%I) : bi_scope.

Infix "≡" := bi_internal_eq : bi_scope.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
324
Notation "▷ P" := (sbi_later P) : bi_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

Coercion bi_valid {PROP : bi} (P : PROP) : Prop := emp  P.
Coercion sbi_valid {PROP : sbi} : PROP  Prop := bi_valid.

Arguments bi_valid {_} _%I : simpl never.
Typeclasses Opaque bi_valid.

Module bi.
Section bi_laws.
Context {PROP : bi}.
Implicit Types φ : Prop.
Implicit Types P Q R : PROP.
Implicit Types A : Type.

(* About the entailment *)
Global Instance entails_po : PreOrder (@bi_entails PROP).
Proof. eapply bi_mixin_entails_po, bi_bi_mixin. Qed.
Lemma equiv_spec P Q : P  Q  (P  Q)  (Q  P).
Proof. eapply bi_mixin_equiv_spec, bi_bi_mixin. Qed.

(* Non-expansiveness *)
Global Instance pure_ne n : Proper (iff ==> dist n) (@bi_pure PROP).
Proof. eapply bi_mixin_pure_ne, bi_bi_mixin. Qed.
Global Instance and_ne : NonExpansive2 (@bi_and PROP).
Proof. eapply bi_mixin_and_ne, bi_bi_mixin. Qed.
Global Instance or_ne : NonExpansive2 (@bi_or PROP).
Proof. eapply bi_mixin_or_ne, bi_bi_mixin. Qed.
Global Instance impl_ne : NonExpansive2 (@bi_impl PROP).
Proof. eapply bi_mixin_impl_ne, bi_bi_mixin. Qed.
Global Instance forall_ne A n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@bi_forall PROP A).
Proof. eapply bi_mixin_forall_ne, bi_bi_mixin. Qed.
Global Instance exist_ne A n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@bi_exist PROP A).
Proof. eapply bi_mixin_exist_ne, bi_bi_mixin. Qed.
Global Instance sep_ne : NonExpansive2 (@bi_sep PROP).
Proof. eapply bi_mixin_sep_ne, bi_bi_mixin. Qed.
Global Instance wand_ne : NonExpansive2 (@bi_wand PROP).
Proof. eapply bi_mixin_wand_ne, bi_bi_mixin. Qed.
364 365
Global Instance plainly_ne : NonExpansive (@bi_plainly PROP).
Proof. eapply bi_mixin_plainly_ne, bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
Global Instance persistently_ne : NonExpansive (@bi_persistently PROP).
Proof. eapply bi_mixin_persistently_ne, bi_bi_mixin. Qed.

(* Higher-order logic *)
Lemma pure_intro P (φ : Prop) : φ  P   φ .
Proof. eapply bi_mixin_pure_intro, bi_bi_mixin. Qed.
Lemma pure_elim' (φ : Prop) P : (φ  True  P)   φ   P.
Proof. eapply bi_mixin_pure_elim', bi_bi_mixin. Qed.
Lemma pure_forall_2 {A} (φ : A  Prop) : ( a,  φ a  : PROP)    a, φ a .
Proof. eapply bi_mixin_pure_forall_2, bi_bi_mixin. Qed.

Lemma and_elim_l P Q : P  Q  P.
Proof. eapply bi_mixin_and_elim_l, bi_bi_mixin. Qed.
Lemma and_elim_r P Q : P  Q  Q.
Proof. eapply bi_mixin_and_elim_r, bi_bi_mixin. Qed.
Lemma and_intro P Q R : (P  Q)  (P  R)  P  Q  R.
Proof. eapply bi_mixin_and_intro, bi_bi_mixin. Qed.

Lemma or_intro_l P Q : P  P  Q.
Proof. eapply bi_mixin_or_intro_l, bi_bi_mixin. Qed.
Lemma or_intro_r P Q : Q  P  Q.
Proof. eapply bi_mixin_or_intro_r, bi_bi_mixin. Qed.
Lemma or_elim P Q R : (P  R)  (Q  R)  P  Q  R.
Proof. eapply bi_mixin_or_elim, bi_bi_mixin. Qed.

Lemma impl_intro_r P Q R : (P  Q  R)  P  Q  R.
Proof. eapply bi_mixin_impl_intro_r, bi_bi_mixin. Qed.
Lemma impl_elim_l' P Q R : (P  Q  R)  P  Q  R.
Proof. eapply bi_mixin_impl_elim_l', bi_bi_mixin. Qed.

Lemma forall_intro {A} P (Ψ : A  PROP) : ( a, P  Ψ a)  P   a, Ψ a.
Proof. eapply bi_mixin_forall_intro, bi_bi_mixin. Qed.
Lemma forall_elim {A} {Ψ : A  PROP} a : ( a, Ψ a)  Ψ a.
399
Proof. eapply (bi_mixin_forall_elim  _ bi_entails), bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
400 401 402 403 404 405 406

Lemma exist_intro {A} {Ψ : A  PROP} a : Ψ a   a, Ψ a.
Proof. eapply bi_mixin_exist_intro, bi_bi_mixin. Qed.
Lemma exist_elim {A} (Φ : A  PROP) Q : ( a, Φ a  Q)  ( a, Φ a)  Q.
Proof. eapply bi_mixin_exist_elim, bi_bi_mixin. Qed.

(* Equality *)
407 408
Global Instance internal_eq_ne (A : ofeT) : NonExpansive2 (@bi_internal_eq PROP A).
Proof. eapply bi_mixin_internal_eq_ne, bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
409 410 411 412 413 414 415

Lemma internal_eq_refl {A : ofeT} P (a : A) : P  a  a.
Proof. eapply bi_mixin_internal_eq_refl, bi_bi_mixin. Qed.
Lemma internal_eq_rewrite {A : ofeT} a b (Ψ : A  PROP) :
  NonExpansive Ψ  a  b  Ψ a  Ψ b.
Proof. eapply bi_mixin_internal_eq_rewrite, bi_bi_mixin. Qed.

416
Lemma fun_ext {A} {B : A  ofeT} (f g : ofe_fun B) : ( x, f x  g x)  (f  g : PROP).
Robbert Krebbers's avatar
Robbert Krebbers committed
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
Proof. eapply bi_mixin_fun_ext, bi_bi_mixin. Qed.
Lemma sig_eq {A : ofeT} (P : A  Prop) (x y : sig P) : `x  `y  (x  y : PROP).
Proof. eapply bi_mixin_sig_eq, bi_bi_mixin. Qed.
Lemma discrete_eq_1 {A : ofeT} (a b : A) :
  Discrete a  a  b  (a  b : PROP).
Proof. eapply bi_mixin_discrete_eq_1, bi_bi_mixin. Qed.

(* BI connectives *)
Lemma sep_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. eapply bi_mixin_sep_mono, bi_bi_mixin. Qed.
Lemma emp_sep_1 P : P  emp  P.
Proof. eapply bi_mixin_emp_sep_1, bi_bi_mixin. Qed.
Lemma emp_sep_2 P : emp  P  P.
Proof. eapply bi_mixin_emp_sep_2, bi_bi_mixin. Qed.
Lemma sep_comm' P Q : P  Q  Q  P.
432
Proof. eapply (bi_mixin_sep_comm' _ bi_entails), bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
433 434 435 436 437 438 439
Lemma sep_assoc' P Q R : (P  Q)  R  P  (Q  R).
Proof. eapply bi_mixin_sep_assoc', bi_bi_mixin. Qed.
Lemma wand_intro_r P Q R : (P  Q  R)  P  Q - R.
Proof. eapply bi_mixin_wand_intro_r, bi_bi_mixin. Qed.
Lemma wand_elim_l' P Q R : (P  Q - R)  P  Q  R.
Proof. eapply bi_mixin_wand_elim_l', bi_bi_mixin. Qed.

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
(* Plainly *)
Lemma plainly_mono P Q : (P  Q)  bi_plainly P  bi_plainly Q.
Proof. eapply bi_mixin_plainly_mono, bi_bi_mixin. Qed.
Lemma plainly_elim_persistently P : bi_plainly P  bi_persistently P.
Proof. eapply bi_mixin_plainly_elim_persistently, bi_bi_mixin. Qed.
Lemma plainly_idemp_2 P : bi_plainly P  bi_plainly (bi_plainly P).
Proof. eapply bi_mixin_plainly_idemp_2, bi_bi_mixin. Qed.
Lemma plainly_forall_2 {A} (Ψ : A  PROP) :
  ( a, bi_plainly (Ψ a))  bi_plainly ( a, Ψ a).
Proof. eapply bi_mixin_plainly_forall_2, bi_bi_mixin. Qed.
Lemma prop_ext P Q : bi_plainly ((P  Q)  (Q  P))  P  Q.
Proof. eapply (bi_mixin_prop_ext _ bi_entails), bi_bi_mixin. Qed.
Lemma persistently_impl_plainly P Q :
  (bi_plainly P  bi_persistently Q)  bi_persistently (bi_plainly P  Q).
Proof. eapply bi_mixin_persistently_impl_plainly, bi_bi_mixin. Qed.
Lemma plainly_impl_plainly P Q :
  (bi_plainly P  bi_plainly Q)  bi_plainly (bi_plainly P  Q).
Proof. eapply bi_mixin_plainly_impl_plainly, bi_bi_mixin. Qed.
Lemma plainly_absorbing P Q : bi_plainly P  Q  bi_plainly P.
Proof. eapply (bi_mixin_plainly_absorbing _ bi_entails), bi_bi_mixin. Qed.
Lemma plainly_emp_intro P : P  bi_plainly emp.
Proof. eapply bi_mixin_plainly_emp_intro, bi_bi_mixin. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
463
(* Persistently *)
464
Lemma persistently_mono P Q : (P  Q)  bi_persistently P  bi_persistently Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
465
Proof. eapply bi_mixin_persistently_mono, bi_bi_mixin. Qed.
466 467
Lemma persistently_idemp_2 P :
  bi_persistently P  bi_persistently (bi_persistently P).
Robbert Krebbers's avatar
Robbert Krebbers committed
468
Proof. eapply bi_mixin_persistently_idemp_2, bi_bi_mixin. Qed.
469 470 471
Lemma plainly_persistently_1 P :
  bi_plainly (bi_persistently P)  bi_plainly P.
Proof. eapply (bi_mixin_plainly_persistently_1 _ bi_entails), bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
472

473 474
Lemma persistently_forall_2 {A} (Ψ : A  PROP) :
  ( a, bi_persistently (Ψ a))  bi_persistently ( a, Ψ a).
Robbert Krebbers's avatar
Robbert Krebbers committed
475
Proof. eapply bi_mixin_persistently_forall_2, bi_bi_mixin. Qed.
476 477
Lemma persistently_exist_1 {A} (Ψ : A  PROP) :
  bi_persistently ( a, Ψ a)   a, bi_persistently (Ψ a).
Robbert Krebbers's avatar
Robbert Krebbers committed
478 479
Proof. eapply bi_mixin_persistently_exist_1, bi_bi_mixin. Qed.

480
Lemma persistently_absorbing P Q : bi_persistently P  Q  bi_persistently P.
481
Proof. eapply (bi_mixin_persistently_absorbing _ bi_entails), bi_bi_mixin. Qed.
482
Lemma persistently_and_sep_elim P Q : bi_persistently P  Q  (emp  P)  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
483
Proof. eapply bi_mixin_persistently_and_sep_elim, bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
484 485 486 487 488 489 490
End bi_laws.

Section sbi_laws.
Context {PROP : sbi}.
Implicit Types φ : Prop.
Implicit Types P Q R : PROP.

Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
491
Global Instance later_contractive : Contractive (@sbi_later PROP).
Robbert Krebbers's avatar
Robbert Krebbers committed
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
Proof. eapply sbi_mixin_later_contractive, sbi_sbi_mixin. Qed.

Lemma later_eq_1 {A : ofeT} (x y : A) : Next x  Next y   (x  y : PROP).
Proof. eapply sbi_mixin_later_eq_1, sbi_sbi_mixin. Qed.
Lemma later_eq_2 {A : ofeT} (x y : A) :  (x  y)  (Next x  Next y : PROP).
Proof. eapply sbi_mixin_later_eq_2, sbi_sbi_mixin. Qed.

Lemma later_mono P Q : (P  Q)   P   Q.
Proof. eapply sbi_mixin_later_mono, sbi_sbi_mixin. Qed.
Lemma löb P : ( P  P)  P.
Proof. eapply sbi_mixin_löb, sbi_sbi_mixin. Qed.

Lemma later_forall_2 {A} (Φ : A  PROP) : ( a,  Φ a)    a, Φ a.
Proof. eapply sbi_mixin_later_forall_2, sbi_sbi_mixin. Qed.
Lemma later_exist_false {A} (Φ : A  PROP) :
  (  a, Φ a)   False  ( a,  Φ a).
Proof. eapply sbi_mixin_later_exist_false, sbi_sbi_mixin. Qed.
Lemma later_sep_1 P Q :  (P  Q)   P   Q.
Proof. eapply sbi_mixin_later_sep_1, sbi_sbi_mixin. Qed.
Lemma later_sep_2 P Q :  P   Q   (P  Q).
Proof. eapply sbi_mixin_later_sep_2, sbi_sbi_mixin. Qed.
513 514 515 516
Lemma later_plainly_1 P :  bi_plainly P  bi_plainly ( P).
Proof. eapply (sbi_mixin_later_plainly_1 bi_entails), sbi_sbi_mixin. Qed.
Lemma later_plainly_2 P : bi_plainly ( P)   bi_plainly P.
Proof. eapply (sbi_mixin_later_plainly_2 bi_entails), sbi_sbi_mixin. Qed.
517
Lemma later_persistently_1 P :  bi_persistently P  bi_persistently ( P).
Robbert Krebbers's avatar
Robbert Krebbers committed
518
Proof. eapply (sbi_mixin_later_persistently_1 bi_entails), sbi_sbi_mixin. Qed.
519
Lemma later_persistently_2 P : bi_persistently ( P)   bi_persistently P.
Robbert Krebbers's avatar
Robbert Krebbers committed
520 521 522 523 524
Proof. eapply (sbi_mixin_later_persistently_2 bi_entails), sbi_sbi_mixin. Qed.

Lemma later_false_em P :  P   False  ( False  P).
Proof. eapply sbi_mixin_later_false_em, sbi_sbi_mixin. Qed.
End sbi_laws.
525

Robbert Krebbers's avatar
Robbert Krebbers committed
526
End bi.