agree.v 11.5 KB
Newer Older
1
From iris.algebra Require Export cmra.
Ralf Jung's avatar
Ralf Jung committed
2
From iris.algebra Require Import list.
3
From iris.base_logic Require Import base_logic.
Ralf Jung's avatar
Ralf Jung committed
4 5 6 7
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Local Arguments op _ _ _ !_ /.
Local Arguments pcore _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
(** Define an agreement construction such that Agree A is discrete when A is discrete.
    Notice that this construction is NOT complete.  The fullowing is due to Aleš:

Proposition: Ag(T) is not necessarily complete.
Proof.
  Let T be the set of binary streams (infinite sequences) with the usual
  ultrametric, measuring how far they agree.

  Let Aₙ be the set of all binary strings of length n. Thus for Aₙ to be a
  subset of T we have them continue as a stream of zeroes.

  Now Aₙ is a finite non-empty subset of T. Moreover {Aₙ} is a Cauchy sequence
  in the defined (Hausdorff) metric.

  However the limit (if it were to exist as an element of Ag(T)) would have to
  be the set of all binary streams, which is not exactly finite.

  Thus Ag(T) is not necessarily complete.
*)

29
Record agree (A : Type) : Type := {
30 31
  agree_car : list A;
  agree_not_nil : bool_decide (agree_car = []) = false
Robbert Krebbers's avatar
Robbert Krebbers committed
32
}.
Ralf Jung's avatar
Ralf Jung committed
33
Arguments agree_car {_} _.
34 35
Arguments agree_not_nil {_} _.
Local Coercion agree_car : agree >-> list.
Ralf Jung's avatar
Ralf Jung committed
36

37 38 39
Definition to_agree {A} (a : A) : agree A :=
  {| agree_car := [a]; agree_not_nil := eq_refl |}.

40 41 42
Lemma elem_of_agree {A} (x : agree A) :  a, a  agree_car x.
Proof. destruct x as [[|a ?] ?]; set_solver+. Qed.
Lemma agree_eq {A} (x y : agree A) : agree_car x = agree_car y  x = y.
Ralf Jung's avatar
Ralf Jung committed
43
Proof.
44 45
  destruct x as [a ?], y as [b ?]; simpl.
  intros ->; f_equal. apply (proof_irrel _).
Ralf Jung's avatar
Ralf Jung committed
46 47
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
48
Section agree.
49
Local Set Default Proof Using "Type".
50
Context {A : ofeT}.
51 52
Implicit Types a b : A.
Implicit Types x y : agree A.
Robbert Krebbers's avatar
Robbert Krebbers committed
53

54
(* OFE *)
55
Instance agree_dist : Dist (agree A) := λ n x y,
56 57 58
  ( a, a  agree_car x   b, b  agree_car y  a {n} b) 
  ( b, b  agree_car y   a, a  agree_car x  a {n} b).
Instance agree_equiv : Equiv (agree A) := λ x y,  n, x {n} y.
Ralf Jung's avatar
Ralf Jung committed
59

60
Definition agree_ofe_mixin : OfeMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
61 62
Proof.
  split.
63 64 65 66 67 68 69 70 71 72
  - done.
  - intros n; split; rewrite /dist /agree_dist.
    + intros x; split; eauto.
    + intros x y [??]. naive_solver eauto.
    + intros x y z [H1 H1'] [H2 H2']; split.
      * intros a ?. destruct (H1 a) as (b&?&?); auto.
        destruct (H2 b) as (c&?&?); eauto. by exists c; split; last etrans.
      * intros a ?. destruct (H2' a) as (b&?&?); auto.
        destruct (H1' b) as (c&?&?); eauto. by exists c; split; last etrans.
  - intros n x y [??]; split; naive_solver eauto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
73
Qed.
74 75
Canonical Structure agreeC := OfeT (agree A) agree_ofe_mixin.

76 77 78 79 80 81 82 83 84 85
(* CMRA *)
(* agree_validN is carefully written such that, when applied to a singleton, it
is convertible to True. This makes working with agreement much more pleasant. *)
Instance agree_validN : ValidN (agree A) := λ n x,
  match agree_car x with
  | [a] => True
  | _ =>  a b, a  agree_car x  b  agree_car x  a {n} b
  end.
Instance agree_valid : Valid (agree A) := λ x,  n, {n} x.

86
Program Instance agree_op : Op (agree A) := λ x y,
87
  {| agree_car := agree_car x ++ agree_car y |}.
88
Next Obligation. by intros [[|??]] y. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
89
Instance agree_pcore : PCore (agree A) := Some.
90

91 92 93 94 95 96
Lemma agree_validN_def n x :
  {n} x   a b, a  agree_car x  b  agree_car x  a {n} b.
Proof.
  rewrite /validN /agree_validN. destruct (agree_car _) as [|? [|??]]; auto.
  setoid_rewrite elem_of_list_singleton; naive_solver.
Qed.
Ralf Jung's avatar
Ralf Jung committed
97

98 99 100
Instance agree_comm : Comm () (@op (agree A) _).
Proof. intros x y n; split=> a /=; setoid_rewrite elem_of_app; naive_solver. Qed.
Instance agree_assoc : Assoc () (@op (agree A) _).
101
Proof.
102
  intros x y z n; split=> a /=; repeat setoid_rewrite elem_of_app; naive_solver.
103
Qed.
104 105 106 107
Lemma agree_idemp (x : agree A) : x  x  x.
Proof. intros n; split=> a /=; setoid_rewrite elem_of_app; naive_solver. Qed.

Instance agree_validN_ne n : Proper (dist n ==> impl) (@validN (agree A) _ n).
Ralf Jung's avatar
Ralf Jung committed
108
Proof.
109 110
  intros x y [H H']; rewrite /impl !agree_validN_def; intros Hv a b Ha Hb.
  destruct (H' a) as (a'&?&<-); auto. destruct (H' b) as (b'&?&<-); auto.
Ralf Jung's avatar
Ralf Jung committed
111
Qed.
112 113
Instance agree_validN_proper n : Proper (equiv ==> iff) (@validN (agree A) _ n).
Proof. move=> x y /equiv_dist H. by split; rewrite (H n). Qed.
Ralf Jung's avatar
Ralf Jung committed
114

115
Instance agree_op_ne' x : NonExpansive (op x).
Robbert Krebbers's avatar
Robbert Krebbers committed
116
Proof.
117
  intros n y1 y2 [H H']; split=> a /=; setoid_rewrite elem_of_app; naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
118
Qed.
119
Instance agree_op_ne : NonExpansive2 (@op (agree A) _).
120
Proof. by intros n x1 x2 Hx y1 y2 Hy; rewrite Hy !(comm _ _ y2) Hx. Qed.
121
Instance agree_op_proper : Proper (() ==> () ==> ()) op := ne_proper_2 _.
122

Robbert Krebbers's avatar
Robbert Krebbers committed
123 124 125 126 127
Lemma agree_included (x y : agree A) : x  y  y  x  y.
Proof.
  split; [|by intros ?; exists y].
  by intros [z Hz]; rewrite Hz assoc agree_idemp.
Qed.
128

Ralf Jung's avatar
Ralf Jung committed
129 130
Lemma agree_op_invN n (x1 x2 : agree A) : {n} (x1  x2)  x1 {n} x2.
Proof.
131 132 133
  rewrite agree_validN_def /=. setoid_rewrite elem_of_app=> Hv; split=> a Ha.
  - destruct (elem_of_agree x2); naive_solver.
  - destruct (elem_of_agree x1); naive_solver.
134 135
Qed.

136
Definition agree_cmra_mixin : CmraMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
137
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
138
  apply cmra_total_mixin; try apply _ || by eauto.
139
  - intros n x; rewrite !agree_validN_def; eauto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
140
  - intros x. apply agree_idemp.
141 142
  - intros n x y; rewrite !agree_validN_def /=.
    setoid_rewrite elem_of_app; naive_solver.
143
  - intros n x y1 y2 Hval Hx; exists x, x; simpl; split.
144
    + by rewrite agree_idemp.
Ralf Jung's avatar
Ralf Jung committed
145
    + by move: Hval; rewrite Hx; move=> /agree_op_invN->; rewrite agree_idemp.
Robbert Krebbers's avatar
Robbert Krebbers committed
146
Qed.
147
Canonical Structure agreeR : cmraT := CmraT (agree A) agree_cmra_mixin.
148

149 150
Global Instance agree_cmra_total : CmraTotal agreeR.
Proof. rewrite /CmraTotal; eauto. Qed.
151
Global Instance agree_core_id (x : agree A) : CoreId x.
Robbert Krebbers's avatar
Robbert Krebbers committed
152
Proof. by constructor. Qed.
153

154
Global Instance agree_cmra_discrete : OfeDiscrete A  CmraDiscrete agreeR.
Ralf Jung's avatar
Ralf Jung committed
155 156
Proof.
  intros HD. split.
157
  - intros x y [H H'] n; split=> a; setoid_rewrite <-(discrete_iff_0 _ _); auto.
158
  - intros x; rewrite agree_validN_def=> Hv n. apply agree_validN_def=> a b ??.
159
    apply discrete_iff_0; auto.
Ralf Jung's avatar
Ralf Jung committed
160 161
Qed.

162
Global Instance to_agree_ne : NonExpansive to_agree.
Ralf Jung's avatar
Ralf Jung committed
163
Proof.
164 165
  intros n a1 a2 Hx; split=> b /=;
    setoid_rewrite elem_of_list_singleton; naive_solver.
Ralf Jung's avatar
Ralf Jung committed
166
Qed.
167
Global Instance to_agree_proper : Proper (() ==> ()) to_agree := ne_proper _.
168

Ralf Jung's avatar
Ralf Jung committed
169
Global Instance to_agree_injN n : Inj (dist n) (dist n) (to_agree).
170 171 172
Proof.
  move=> a b [_] /=. setoid_rewrite elem_of_list_singleton. naive_solver.
Qed.
Ralf Jung's avatar
Ralf Jung committed
173
Global Instance to_agree_inj : Inj () () (to_agree).
174
Proof. intros a b ?. apply equiv_dist=>n. by apply to_agree_injN, equiv_dist. Qed.
175

176
Lemma to_agree_uninjN n (x : agree A) : {n} x   a : A, to_agree a {n} x.
177
Proof.
178 179 180
  rewrite agree_validN_def=> Hv.
  destruct (elem_of_agree x) as [a ?].
  exists a; split=> b /=; setoid_rewrite elem_of_list_singleton; naive_solver.
Ralf Jung's avatar
Ralf Jung committed
181 182
Qed.

183 184
Lemma to_agree_uninj (x : agree A) :  x   y : A, to_agree y  x.
Proof.
185 186 187
  rewrite /valid /agree_valid; setoid_rewrite agree_validN_def.
  destruct (elem_of_agree x) as [a ?].
  exists a; split=> b /=; setoid_rewrite elem_of_list_singleton; naive_solver.
188 189
Qed.

190
Lemma agree_valid_includedN n x y : {n} y  x {n} y  x {n} y.
Ralf Jung's avatar
Ralf Jung committed
191
Proof.
192 193 194 195 196 197 198 199 200
  move=> Hval [z Hy]; move: Hval; rewrite Hy.
  by move=> /agree_op_invN->; rewrite agree_idemp.
Qed.

Lemma to_agree_included a b : to_agree a  to_agree b  a  b.
Proof.
  split; last by intros ->.
  intros (x & Heq). apply equiv_dist=>n. destruct (Heq n) as [_ Hincl].
  by destruct (Hincl a) as (? & ->%elem_of_list_singleton & ?); first set_solver+.
201 202
Qed.

203
Global Instance agree_cancelable x : Cancelable x.
204 205 206 207 208 209 210
Proof.
  intros n y z Hv Heq.
  destruct (to_agree_uninjN n x) as [x' EQx]; first by eapply cmra_validN_op_l.
  destruct (to_agree_uninjN n y) as [y' EQy]; first by eapply cmra_validN_op_r.
  destruct (to_agree_uninjN n z) as [z' EQz].
  { eapply (cmra_validN_op_r n x z). by rewrite -Heq. }
  assert (Hx'y' : x' {n} y').
211
  { apply (inj to_agree), agree_op_invN. by rewrite EQx EQy. }
212
  assert (Hx'z' : x' {n} z').
213
  { apply (inj to_agree), agree_op_invN. by rewrite EQx EQz -Heq. }
214 215 216
  by rewrite -EQy -EQz -Hx'y' -Hx'z'.
Qed.

217
Lemma agree_op_inv x y :  (x  y)  x  y.
218 219 220
Proof.
  intros ?. apply equiv_dist=>n. by apply agree_op_invN, cmra_valid_validN.
Qed.
221
Lemma agree_op_inv' a b :  (to_agree a  to_agree b)  a  b.
222
Proof. by intros ?%agree_op_inv%(inj _). Qed.
223
Lemma agree_op_invL' `{!LeibnizEquiv A} a b :  (to_agree a  to_agree b)  a = b.
224 225
Proof. by intros ?%agree_op_inv'%leibniz_equiv. Qed.

226
(** Internalized properties *)
227
Lemma agree_equivI {M} a b : to_agree a  to_agree b  (a  b : uPred M).
228
Proof.
Ralf Jung's avatar
Ralf Jung committed
229 230 231
  uPred.unseal. do 2 split.
  - intros Hx. exact: to_agree_injN.
  - intros Hx. exact: to_agree_ne.
232
Qed.
233
Lemma agree_validI {M} x y :  (x  y)  (x  y : uPred M).
Ralf Jung's avatar
Ralf Jung committed
234
Proof. uPred.unseal; split=> r n _ ?; by apply: agree_op_invN. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
235 236
End agree.

237
Instance: Params (@to_agree) 1.
238
Arguments agreeC : clear implicits.
239
Arguments agreeR : clear implicits.
240

241
Program Definition agree_map {A B} (f : A  B) (x : agree A) : agree B :=
242 243
  {| agree_car := f <$> agree_car x |}.
Next Obligation. by intros A B f [[|??] ?]. Qed.
244
Lemma agree_map_id {A} (x : agree A) : agree_map id x = x.
245
Proof. apply agree_eq. by rewrite /= list_fmap_id. Qed.
246 247
Lemma agree_map_compose {A B C} (f : A  B) (g : B  C) (x : agree A) :
  agree_map (g  f) x = agree_map g (agree_map f x).
248
Proof. apply agree_eq. by rewrite /= list_fmap_compose. Qed.
249

Robbert Krebbers's avatar
Robbert Krebbers committed
250
Section agree_map.
251
  Context {A B : ofeT} (f : A  B) `{Hf: NonExpansive f}.
252

253
  Instance agree_map_ne : NonExpansive (agree_map f).
254 255 256 257
  Proof.
    intros n x y [H H']; split=> b /=; setoid_rewrite elem_of_list_fmap.
    - intros (a&->&?). destruct (H a) as (a'&?&?); auto. naive_solver.
    - intros (a&->&?). destruct (H' a) as (a'&?&?); auto. naive_solver.
Ralf Jung's avatar
Ralf Jung committed
258
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
259
  Instance agree_map_proper : Proper (() ==> ()) (agree_map f) := ne_proper _.
Ralf Jung's avatar
Ralf Jung committed
260

261
  Lemma agree_map_ext (g : A  B) x :
262 263 264 265 266
    ( a, f a  g a)  agree_map f x  agree_map g x.
  Proof using Hf.
    intros Hfg n; split=> b /=; setoid_rewrite elem_of_list_fmap.
    - intros (a&->&?). exists (g a). rewrite Hfg; eauto.
    - intros (a&->&?). exists (f a). rewrite -Hfg; eauto.
Ralf Jung's avatar
Ralf Jung committed
267 268
  Qed.

269
  Global Instance agree_map_morphism : CmraMorphism (agree_map f).
270
  Proof using Hf.
Robbert Krebbers's avatar
Robbert Krebbers committed
271
    split; first apply _.
272 273 274
    - intros n x. rewrite !agree_validN_def=> Hv b b' /=.
      intros (a&->&?)%elem_of_list_fmap (a'&->&?)%elem_of_list_fmap.
      apply Hf; eauto.
275
    - done.
276 277
    - intros x y n; split=> b /=;
        rewrite !fmap_app; setoid_rewrite elem_of_app; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
278 279
  Qed.
End agree_map.
Robbert Krebbers's avatar
Robbert Krebbers committed
280

281 282
Definition agreeC_map {A B} (f : A -n> B) : agreeC A -n> agreeC B :=
  CofeMor (agree_map f : agreeC A  agreeC B).
283
Instance agreeC_map_ne A B : NonExpansive (@agreeC_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
284
Proof.
285 286
  intros n f g Hfg x; split=> b /=;
    setoid_rewrite elem_of_list_fmap; naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
287
Qed.
Ralf Jung's avatar
Ralf Jung committed
288

289 290 291 292
Program Definition agreeRF (F : cFunctor) : rFunctor := {|
  rFunctor_car A B := agreeR (cFunctor_car F A B);
  rFunctor_map A1 A2 B1 B2 fg := agreeC_map (cFunctor_map F fg)
|}.
293 294 295
Next Obligation.
  intros ? A1 A2 B1 B2 n ???; simpl. by apply agreeC_map_ne, cFunctor_ne.
Qed.
296 297
Next Obligation.
  intros F A B x; simpl. rewrite -{2}(agree_map_id x).
298
  apply (agree_map_ext _)=>y. by rewrite cFunctor_id.
299 300 301
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x; simpl. rewrite -agree_map_compose.
302
  apply (agree_map_ext _)=>y; apply cFunctor_compose.
303
Qed.
304 305 306 307 308 309 310

Instance agreeRF_contractive F :
  cFunctorContractive F  rFunctorContractive (agreeRF F).
Proof.
  intros ? A1 A2 B1 B2 n ???; simpl.
  by apply agreeC_map_ne, cFunctor_contractive.
Qed.