derived.tex 23.3 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
\section{Derived Program logic}\label{sec:proglog}

Hoare triples and view shifts are syntactic sugar for weakest (liberal) preconditions and primitive view shifts, respectively:
\[
\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask] \eqdef \always{(\prop \Ra \dynA{\expr}{\lambda\Ret\val.\propB}{\mask})}
\qquad\qquad
\begin{aligned}
\prop \vs[\mask_1][\mask_2] \propB &\eqdef \always{(\prop \Ra \pvsA{\propB}{\mask_1}{\mask_2})} \\
\prop \vsE[\mask_1][\mask_2] \propB &\eqdef \prop \vs[\mask_1][\mask_2] \propB \land \propB \vs[\mask2][\mask_1] \prop
\end{aligned}
\]
We write just one mask for a view shift when $\mask_1 = \mask_2$.
The convention for omitted masks is generous:
An omitted $\mask$ is $\top$ for Hoare triples and $\emptyset$ for view shifts.

% PDS: We're repeating ourselves. We gave Γ conventions and we're about to give Θ conventions. Also, the scope of "Below" is unclear.
% Below, we implicitly assume the same context for all judgements which don't have an explicit context at \emph{all} pre-conditions \emph{and} the conclusion.

Henceforward, we implicitly assume a proof context, $\pfctx$, is added to every constituent of the rules.
Generally, this is an arbitrary proof context.
We write $\provesalways$ to denote judgments that can only be extended with a boxed proof context.

\ralf{Give the actual base rules from the Coq development instead}

\subsection{Hoare triples}
\begin{mathpar}
\inferH{Ret}
  {}
  {\hoare{\TRUE}{\valB}{\Ret\val. \val = \valB}[\mask]}
\and
\inferH{Bind}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask] \\
   \All \val. \hoare{\propB}{K[\val]}{\Ret\valB.\propC}[\mask]}
  {\hoare{\prop}{K[\expr]}{\Ret\valB.\propC}[\mask]}
\and
\inferH{Csq}
  {\prop \vs \prop' \\
    \hoare{\prop'}{\expr}{\Ret\val.\propB'}[\mask] \\   
   \All \val. \propB' \vs \propB}
  {\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask]}
\and
\inferH{Frame}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask]}
  {\hoare{\prop * \propC}{\expr}{\Ret\val. \propB * \propC}[\mask \uplus \mask']}
\and
\inferH{AFrame}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask] \and \text{$\expr$ not a value}
  }
  {\hoare{\prop * \later\propC}{\expr}{\Ret\val. \propB * \propC}[\mask \uplus \mask']}
% \and
% \inferH{Fork}
%   {\hoare{\prop}{\expr}{\Ret\any. \TRUE}[\top]}
%   {\hoare{\later\prop * \later\propB}{\fork{\expr}}{\Ret\val. \val = \textsf{fRet} \land \propB}[\mask]}
\and
\inferH{ACsq}
  {\prop \vs[\mask \uplus \mask'][\mask] \prop' \\
    \hoare{\prop'}{\expr}{\Ret\val.\propB'}[\mask] \\   
   \All\val. \propB' \vs[\mask][\mask \uplus \mask'] \propB \\
   \physatomic{\expr}
  }
  {\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask \uplus \mask']}
\end{mathpar}

\subsection{View shifts}

\begin{mathpar}
\inferH{NewInv}
  {\infinite(\mask)}
  {\later{\prop} \vs[\mask] \exists \iname\in\mask.\; \knowInv{\iname}{\prop}}
\and
\inferH{FpUpd}
  {\melt \mupd \meltsB}
  {\ownGGhost{\melt} \vs \exists \meltB \in \meltsB.\; \ownGGhost{\meltB}}
\and
\inferH{VSTrans}
  {\prop \vs[\mask_1][\mask_2] \propB \and \propB \vs[\mask_2][\mask_3] \propC \and \mask_2 \subseteq \mask_1 \cup \mask_3}
  {\prop \vs[\mask_1][\mask_3] \propC}
\and
\inferH{VSImp}
  {\always{(\prop \Ra \propB)}}
  {\prop \vs[\emptyset] \propB}
\and
\inferH{VSFrame}
  {\prop \vs[\mask_1][\mask_2] \propB}
  {\prop * \propC \vs[\mask_1 \uplus \mask'][\mask_2 \uplus \mask'] \propB * \propC}
\and
\inferH{VSTimeless}
  {\timeless{\prop}}
  {\later \prop \vs \prop}
\and
\axiomH{InvOpen}
  {\knowInv{\iname}{\prop} \proves \TRUE \vs[\{ \iname \} ][\emptyset] \later \prop}
\and
\axiomH{InvClose}
  {\knowInv{\iname}{\prop} \proves \later \prop \vs[\emptyset][\{ \iname \} ] \TRUE }
\end{mathpar}

\vspace{5pt}
Note that $\timeless{\prop}$ means that $\prop$ does not depend on the step index.
Furthermore, $$\melt \mupd \meltsB \eqdef \always{\All \melt_f. \melt \sep \melt_f \Ra \Exists \meltB \in \meltsB. \meltB \sep \melt_f}$$

\subsection{Derived rules}

\paragraph{Derived structural rules.}
The following are easily derived by unfolding the sugar for Hoare triples and view shifts.
\begin{mathpar}
\inferHB{Disj}
  {\hoare{\prop}{\expr}{\Ret\val.\propC}[\mask] \and \hoare{\propB}{\expr}{\Ret\val.\propC}[\mask]}
  {\hoare{\prop \lor \propB}{\expr}{\Ret\val.\propC}[\mask]}
\and
\inferHB{VSDisj}
  {\prop \vs[\mask_1][\mask_2] \propC \and \propB \vs[\mask_1][\mask_2] \propC}
  {\prop \lor \propB \vs[\mask_1][\mask_2] \propC}
\and
\inferHB{Exist}
  {\All \var. \hoare{\prop}{\expr}{\Ret\val.\propB}[\mask]}
  {\hoare{\Exists \var. \prop}{\expr}{\Ret\val.\propB}[\mask]}
\and
\inferHB{VSExist}
  {\All \var. (\prop \vs[\mask_1][\mask_2] \propB)}
  {(\Exists \var. \prop) \vs[\mask_1][\mask_2] \propB}
\and
\inferHB{BoxOut}
  {\always\propB \provesalways \hoare{\prop}{\expr}{\Ret\val.\propC}[\mask]}
  {\hoare{\prop \land \always{\propB}}{\expr}{\Ret\val.\propC}[\mask]}
\and
\inferHB{VSBoxOut}
  {\always\propB \provesalways \prop \vs[\mask_1][\mask_2] \propC}
  {\prop \land \always{\propB} \vs[\mask_1][\mask_2] \propC}
 \and
\inferH{False}
  {}
  {\hoare{\FALSE}{\expr}{\Ret \val. \prop}[\mask]}
\and
\inferH{VSFalse}
  {}
  {\FALSE \vs[\mask_1][\mask_2] \prop }
\end{mathpar}
The proofs all follow the same pattern, so we only show two of them in detail.
\begin{proof}[Proof of \ruleref{Exist}]
	After unfolding the syntactic sugar for Hoare triples and removing the boxes from premise and conclusion, our goal becomes
	\[
		(\Exists \var. \prop(\var)) \Ra \dynA{\expr}{\Lam\val. \propB}{\mask}
	\]
	(remember that $\var$ is free in $\prop$) and the premise reads
	\[
		\All \var. \prop(\var) \Ra \dynA{\expr}{\Lam\val. \propB}{\mask}.
	\]
	Let $\var$ be given and assume $\prop(\var)$.
	To show $\dynA{\expr}{\Lam\val. \propB}{\mask}$, apply the premise to $\var$ and $\prop(\var)$.
 
	For the other direction, assume
	\[
		\hoare{\Exists \var. \prop(\var)}{\expr}{\Ret\val. \propB}[\mask]
	\]
	and let $\var$ be given.
	We have to show $\hoare{\prop(\var)}{\expr}{\Ret\val. \propB}[\mask]$.
	This trivially follows from \ruleref{Csq} with $\prop(\var) \Ra \Exists \var. \prop(\var)$.
\end{proof}

\begin{proof}[Proof of \ruleref{BoxOut}]
  After unfolding the syntactic sugar for Hoare triples, our goal becomes
  \begin{equation}\label{eq:boxin:goal}
    \always\pfctx \proves \always\bigl(\prop\land\always \propB \Ra \dynA{\expr}{\Lam\val. \propC}{\mask}\bigr)
  \end{equation}
  while our premise reads
  \begin{equation}\label{eq:boxin:as}
    \always\pfctx, \always\propB \proves \always(\prop \Ra \dynA{\expr}{\Lam\val. \propC}{\mask})
  \end{equation}
  By the introduction rules for $\always$ and implication, it suffices to show
  \[  (\always\pfctx), \prop,\always \propB \proves \dynA{\expr}{\Lam\val. \propC}{\mask} \]
  By modus ponens and \ruleref{Necessity}, it suffices to show~\eqref{eq:boxin:as}, which is exactly our assumption.
  
  For the other direction, assume~\eqref{eq:boxin:goal}. We have to show~\eqref{eq:boxin:as}. By \ruleref{AlwaysIntro} and implication introduction, it suffices to show
  \[  (\always\pfctx), \prop,\always \propB \proves \dynA{\expr}{\Lam\val. \propC}{\mask} \]
  which easily follows from~\eqref{eq:boxin:goal}.
\end{proof}

\paragraph{Derived rules for invariants.}
Invariants can be opened around atomic expressions and view shifts.

\begin{mathpar}
\inferH{Inv}
  {\hoare{\later{\propC} * \prop }
          {\expr}
          {\Ret\val. \later{\propC} * \propB }[\mask]
          \and \physatomic{\expr}
  }
  {\knowInv{\iname}{\propC} \proves \hoare{\prop}
          {\expr}
          {\Ret\val. \propB}[\mask \uplus \{ \iname \}]
  }
\and
\inferH{VSInv}
  {\later{\prop} * \propB \vs[\mask_1][\mask_2] \later{\prop} * \propC}
  {\knowInv{\iname}{\prop} \proves \propB \vs[\mask_1 \uplus \{ \iname \}][\mask_2 \uplus \{ \iname \}] \propC}
\end{mathpar}

\begin{proof}[Proof of \ruleref{Inv}]
  Use \ruleref{ACsq} with $\mask_1 \eqdef \mask \cup \{\iname\}$, $\mask_2 \eqdef \mask$.
  The view shifts are obtained by \ruleref{InvOpen} and \ruleref{InvClose} with framing of $\mask$ and $\prop$ or $\propB$, respectively.
\end{proof}

\begin{proof}[Proof of \ruleref{VSInv}]
Analogous to the proof of \ruleref{Inv}, using \ruleref{VSTrans} instead of \ruleref{ACsq}.
\end{proof}

\subsubsection{Unsound rules}

Some rule suggestions (or rather, wishes) keep coming up, which are unsound. We collect them here.
\begin{mathpar}
	\infer
	{P \vs Q}
	{\later P \vs \later Q}
	\and
	\infer
	{\later(P \vs Q)}
	{\later P \vs \later Q}
\end{mathpar}

Of course, the second rule implies the first, so let's focus on that.
Since implications work under $\later$, from $\later P$ we can get $\later \pvs{Q}$.
If we now try to prove $\pvs{\later Q}$, we will be unable to establish world satisfaction in the new world:
We have no choice but to use $\later \pvs{Q}$ at one step index below what we are operating on (because we have it under a $\later$).
We can easily get world satisfaction for that lower step-index (by downwards-closedness of step-indexed predicates).
We can, however, not make much use of the world satisfaction that we get out, becaase it is one step-index too low.

\subsection{Adequacy}

The adequacy statement reads as follows:
\begin{align*}
 &\All \mask, \expr, \val, \pred, i, \state, \state', \tpool'.
 \\&( \proves \hoare{\ownPhys\state}{\expr}{x.\; \pred(x)}[\mask]) \implies
 \\&\cfg{\state}{[i \mapsto \expr]} \step^\ast
     \cfg{\state'}{[i \mapsto \val] \uplus \tpool'} \implies
     \\&\pred(\val)
\end{align*}
where $\pred$ can mention neither resources nor invariants.

\subsection{Axiom lifting}\label{sec:lifting}

The following lemmas help in proving axioms for a particular language.
The first applies to expressions with side-effects, and the second to side-effect-free expressions.
\dave{Update the others, and the example, wrt the new treatment of $\predB$.}
\begin{align*}
 &\All \expr, \state, \pred, \prop, \propB, \mask. \\
 &\textlog{reducible}(e) \implies \\
 &(\All \expr', \state'. \cfg{\state}{\expr} \step \cfg{\state'}{\expr'} \implies \pred(\expr', \state')) \implies \\
 &{} \proves \bigl( (\All \expr', \state'. \pred (\expr', \state') \Ra \hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask]) \Ra \hoare{ \later \prop * \ownPhys{\state} }{\expr}{\Ret\val. \propB}[\mask] \bigr) \\
 \quad\\
 &\All \expr, \pred, \prop, \propB, \mask. \\
 &\textlog{reducible}(e) \implies \\
 &(\All \state, \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \state_2 = \state \land \pred(\expr_2)) \implies \\
 &{} \proves \bigl( (\All \expr'. \pred(\expr') \Ra \hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask]) \Ra \hoare{\later\prop}{\expr}{\Ret\val. \propB}[\mask] \bigr)
\end{align*}
Note that $\pred$ is a meta-logic predicate---it does not depend on any world or resources being owned.

The following specializations cover all cases of a heap-manipulating lambda calculus like $F_{\mu!}$.
\begin{align*}
 &\All \expr, \expr', \prop, \propB, \mask. \\
 &\textlog{reducible}(e) \implies \\
 &(\All \state, \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \state_2 = \state \land \expr_2 = \expr') \implies \\
 &{} \proves (\hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask] \Ra \hoare{\later\prop}{\expr}{\Ret\val. \propB}[\mask] ) \\
 \quad \\
 &\All \expr, \state, \pred, \mask. \\
 &\textlog{atomic}(e) \implies \\
 &\bigl(\All \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \pred(\expr_2, \state_2)\bigr) \implies \\
 &{} \proves (\hoare{ \ownPhys{\state} }{\expr}{\Ret\val. \Exists\state'. \ownPhys{\state'} \land \pred(\val, \state') }[\mask] )
\end{align*}
The first is restricted to deterministic pure reductions, like $\beta$-reduction.
The second is suited to proving triples for (possibly non-deterministic) atomic expressions; for example, with $\expr \eqdef \;!\ell$ (dereferencing $\ell$) and $\state \eqdef h \mtimes \ell \mapsto \valB$ and $\pred(\val, \state') \eqdef \state' = (h \mtimes \ell \mapsto \valB) \land \val = \valB$, one obtains the axiom $\All h, \ell, \valB. \hoare{\ownPhys{h \mtimes \ell \mapsto \valB}}{!\ell}{\Ret\val. \val = \valB \land \ownPhys{h \mtimes \ell \mapsto \valB} }$.
%Axioms for CAS-like operations can be obtained by first deriving rules for the two possible cases, and then using the disjunction rule.


275
276
277
278
279
280
281
\section{Derived constructions}

In this section we describe some constructions that we will use throughout the rest of the appendix.

\subsection{Global monoid}

Hereinafter we assume the global monoid (served up as a parameter to Iris) is obtained from a family of monoids $(M_i)_{i \in I}$ by first applying the construction for finite partial functions to each~(\Sref{sec:fpfunm}), and then applying the product construction~(\Sref{sec:prodm}):
Ralf Jung's avatar
Ralf Jung committed
282
\[ M \eqdef \prod_{i \in I} \textdom{GhName} \fpfn M_i \]
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
We don't care so much about what concretely $\textdom{GhName}$ is, as long as it is countable and infinite.
We write $\ownGhost{\gname}{\melt : M_i}$ (or just $\ownGhost{\gname}{\melt}$ if $M_i$ is clear from the context) for $\ownGGhost{[i \mapsto [\gname \mapsto \melt]]}$ when $\melt \in \mcarp {M_i}$, and for $\FALSE$ when $\melt = \mzero_{M_i}$.
In other words, $\ownGhost{\gname}{\melt : M_i}$ asserts that in the current state of monoid $M_i$, the name $\gname$ is allocated and has at least value $\melt$.

From~\ruleref{FpUpd} and the multiplications and frame-preserving updates in~\Sref{sec:prodm} and~\Sref{sec:fpfunm}, we have the following derived rules.
\begin{mathpar}
	\axiomH{NewGhost}{
		\TRUE \vs \Exists\gname. \ownGhost\gname{\melt : M_i}
	}
	\and
	\inferH{GhostUpd}
    {\melt \mupd_{M_i} B}
    {\ownGhost\gname{\melt : M_i} \vs \Exists \meltB\in B. \ownGhost\gname{\meltB : M_i}}
  \and
  \axiomH{GhostEq}
    {\ownGhost\gname{\melt : M_i} * \ownGhost\gname{\meltB : M_i} \Lra \ownGhost\gname{\melt\mtimes\meltB : M_i}}

  \axiomH{GhostUnit}
    {\TRUE \Ra \ownGhost{\gname}{\munit : M_i}}

  \axiomH{GhostZero}
    {\ownGhost\gname{\mzero : M_i} \Ra \FALSE}

  \axiomH{GhostTimeless}
    {\timeless{\ownGhost\gname{\melt : M_i}}}
\end{mathpar}

\subsection{STSs with interpretation}\label{sec:stsinterp}

Building on \Sref{sec:stsmon}, after constructing the monoid $\STSMon{\STSS}$ for a particular STS, we can use an invariant to tie an interpretation, $\pred : \STSS \to \Prop$, to the STS's current state, recovering CaReSL-style reasoning~\cite{caresl}.

An STS invariant asserts authoritative ownership of an STS's current state and that state's interpretation:
\begin{align*}
  \STSInv(\STSS, \pred, \gname) \eqdef{}& \Exists s \in \STSS. \ownGhost{\gname}{(s, \STSS, \emptyset):\STSMon{\STSS}} * \pred(s) \\
  \STS(\STSS, \pred, \gname, \iname) \eqdef{}& \knowInv{\iname}{\STSInv(\STSS, \pred, \gname)}
\end{align*}

We can specialize \ruleref{NewInv}, \ruleref{InvOpen}, and \ruleref{InvClose} to STS invariants:
\begin{mathpar}
 \inferH{NewSts}
  {\infinite(\mask)}
  {\later\pred(s) \vs[\mask] \Exists \iname \in \mask, \gname.   \STS(\STSS, \pred, \gname, \iname) * \ownGhost{\gname}{(s, \STST \setminus \STSL(s)) : \STSMon{\STSS}}}
 \and
 \axiomH{StsOpen}
  {  \STS(\STSS, \pred, \gname, \iname) \vdash \ownGhost{\gname}{(s_0, T) : \STSMon{\STSS}} \vsE[\{\iname\}][\emptyset] \Exists s\in \upclose(\{s_0\}, T). \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T):\STSMon{\STSS}}}
 \and
 \axiomH{StsClose}
  {  \STS(\STSS, \pred, \gname, \iname), (s, T) \ststrans (s', T')  \proves \later\pred(s') * \ownGhost{\gname}{(s, S, T):\STSMon{\STSS}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{(s', T') : \STSMon{\STSS}} }
\end{mathpar}
\begin{proof}
\ruleref{NewSts} uses \ruleref{NewGhost} to allocate $\ownGhost{\gname}{(s, \upclose(s, T), T) : \STSMon{\STSS}}$ where $T \eqdef \STST \setminus \STSL(s)$, and \ruleref{NewInv}.

\ruleref{StsOpen} just uses \ruleref{InvOpen} and \ruleref{InvClose} on $\iname$, and the monoid equality $(s, \upclose(\{s_0\}, T), T) = (s, \STSS, \emptyset) \mtimes (\munit, \upclose(\{s_0\}, T), T)$.

\ruleref{StsClose} applies \ruleref{StsStep} and \ruleref{InvClose}.
\end{proof}

Using these view shifts, we can prove STS variants of the invariant rules \ruleref{Inv} and \ruleref{VSInv}~(compare the former to CaReSL's island update rule~\cite{caresl}):
\begin{mathpar}
 \inferH{Sts}
  {\All s \in \upclose(\{s_0\}, T). \hoare{\later\pred(s) * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * Q}[\mask]
   \and \physatomic{\expr}}
  {  \STS(\STSS, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P}{\expr}{\Ret \val. \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}[\mask \uplus \{\iname\}]}
 \and
 \inferH{VSSts}
  {\forall s \in \upclose(\{s_0\}, T).\; \later\pred(s) * P \vs[\mask_1][\mask_2] \exists s', T'.\; (s, T) \ststrans (s', T') * \later\pred(s') * Q}
  {  \STS(\STSS, \pred, \gname, \iname) \vdash \ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}] \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}
\end{mathpar}

\begin{proof}[Proof of \ruleref{Sts}]\label{pf:sts}
 We have to show
 \[\hoare{\ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P}{\expr}{\Ret \val. \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}[\mask \uplus \{\iname\}]\]
 where $\val$, $s'$, $T'$ are free in $Q$.
 
 First, by \ruleref{ACsq} with \ruleref{StsOpen} and \ruleref{StsClose} (after moving $(s, T) \ststrans (s', T')$ into the view shift using \ruleref{VSBoxOut}), it suffices to show
 \[\hoareV{\Exists s\in \upclose(\{s_0\}, T). \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * P}{\expr}{\Ret \val. \Exists s, T, S, s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * \ownGhost{\gname}{(s, S, T):\STSMon{\STSS}} * Q(\val, s', T')}[\mask]\]

 Now, use \ruleref{Exist} to move the $s$ from the precondition into the context and use \ruleref{Csq} to (i)~fix the $s$ and $T$ in the postcondition to be the same as in the precondition, and (ii)~fix $S \eqdef \upclose(\{s_0\}, T)$.
 It remains to show:
 \[\hoareV{s\in \upclose(\{s_0\}, T) * \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * Q(\val, s', T')}[\mask]\]
 
 Finally, use \ruleref{BoxOut} to move $s\in \upclose(\{s_0\}, T)$ into the context, and \ruleref{Frame} on $\ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)}$:
 \[s\in \upclose(\{s_0\}, T) \vdash \hoare{\later\pred(s) * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * Q(\val, s', T')}[\mask]\]
 
 This holds by our premise.
\end{proof}

Ralf Jung's avatar
Ralf Jung committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
% \begin{proof}[Proof of \ruleref{VSSts}]
% This is similar to above, so we only give the proof in short notation:

% \hproof{%
% 	Context: $\knowInv\iname{\STSInv(\STSS, \pred, \gname)}$ \\
% 	\pline[\mask_1 \uplus \{\iname\}]{
% 		\ownGhost\gname{(s_0, T)} * P
% 	} \\
% 	\pline[\mask_1]{%
% 		\Exists s. \later\pred(s) * \ownGhost\gname{(s, S, T)} * P
% 	} \qquad by \ruleref{StsOpen} \\
% 	Context: $s \in S \eqdef \upclose(\{s_0\}, T)$ \\
% 	\pline[\mask_2]{%
% 		 \Exists s', T'. \later\pred(s') * Q(s', T') * \ownGhost\gname{(s, S, T)}
% 	} \qquad by premiss \\
% 	Context: $(s, T) \ststrans (s', T')$ \\
% 	\pline[\mask_2 \uplus \{\iname\}]{
% 		\ownGhost\gname{(s', T')} * Q(s', T')
% 	} \qquad by \ruleref{StsClose}
% }
% \end{proof}
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461

\subsection{Authoritative monoids with interpretation}\label{sec:authinterp}

Building on \Sref{sec:auth}, after constructing the monoid $\auth{M}$ for a cancellative monoid $M$, we can tie an interpretation, $\pred : \mcarp{M} \to \Prop$, to the authoritative element of $M$, recovering reasoning that is close to the sharing rule in~\cite{krishnaswami+:icfp12}.

Let $\pred_\bot$ be the extension of $\pred$ to $\mcar{M}$ with $\pred_\bot(\mzero) = \FALSE$.
Now define
\begin{align*}
  \AuthInv(M, \pred, \gname) \eqdef{}& \exists \melt \in \mcar{M}.\; \ownGhost{\gname}{\authfull \melt:\auth{M}} * \pred_\bot(\melt) \\
  \Auth(M, \pred, \gname, \iname) \eqdef{}& M~\textlog{cancellative} \land \knowInv{\iname}{\AuthInv(M, \pred, \gname)}
\end{align*}

The frame-preserving updates for $\auth{M}$ gives rise to the following view shifts:
\begin{mathpar}
 \inferH{NewAuth}
  {\infinite(\mask) \and M~\textlog{cancellative}}
  {\later\pred_\bot(a) \vs[\mask] \exists \iname \in \mask, \gname.\; \Auth(M, \pred, \gname, \iname) * \ownGhost{\gname}{\authfrag a : \auth{M}}}
 \and
 \axiomH{AuthOpen}
  {\Auth(M, \pred, \gname, \iname) \vdash \ownGhost{\gname}{\authfrag \melt : \auth{M}} \vsE[\{\iname\}][\emptyset] \exists \melt_f.\; \later\pred_\bot(\melt \mtimes \melt_f) * \ownGhost{\gname}{\authfull \melt \mtimes \melt_f, \authfrag a:\auth{M}}}
 \and
 \axiomH{AuthClose}
  {\Auth(M, \pred, \gname, \iname) \vdash \later\pred_\bot(\meltB \mtimes \melt_f) * \ownGhost{\gname}{\authfull a \mtimes \melt_f, \authfrag a:\auth{M}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{\authfrag \meltB : \auth{M}} }
\end{mathpar}

These view shifts in turn can be used to prove variants of the invariant rules:
\begin{mathpar}
 \inferH{Auth}
  {\forall \melt_f.\; \hoare{\later\pred_\bot(a \mtimes \melt_f) * P}{\expr}{\Ret\val. \exists \meltB.\; \later\pred_\bot(\meltB\mtimes \melt_f) * Q}[\mask]
   \and \physatomic{\expr}}
  {\Auth(M, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{\authfrag a:\auth{M}} * P}{\expr}{\Ret\val. \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q}[\mask \uplus \{\iname\}]}
 \and
 \inferH{VSAuth}
  {\forall \melt_f.\; \later\pred_\bot(a \mtimes \melt_f) * P \vs[\mask_1][\mask_2] \exists \meltB.\; \later\pred_\bot(\meltB \mtimes \melt_f) * Q(\meltB)}
  {\Auth(M, \pred, \gname, \iname) \vdash
   \ownGhost{\gname}{\authfrag a:\auth{M}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}]
   \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q(\meltB)}
\end{mathpar}


\subsection{Ghost heap}
\label{sec:ghostheap}%

We define a simple ghost heap with fractional permissions.
Some modules require a few ghost names per module instance to properly manage ghost state, but would like to expose to clients a single logical name (avoiding clutter).
In such cases we use these ghost heaps.

We seek to implement the following interface:
\newcommand{\GRefspecmaps}{\textsf{GMapsTo}}%
\begin{align*}
 \exists& {\fgmapsto[]} : \textsort{Val} \times \mathbb{Q}_{>} \times \textsort{Val} \ra \textsort{Prop}.\;\\
  & \All x, q, v. x \fgmapsto[q] v \Ra x \fgmapsto[q] v \land q \in (0, 1] \\
  &\forall x, q_1, q_2, v, w.\; x \fgmapsto[q_1] v * x \fgmapsto[q_2] w \Leftrightarrow x \fgmapsto[q_1 + q_2] v * v = w\\
  & \forall v.\; \TRUE \vs[\emptyset] \exists x.\; x \fgmapsto[1] v \\
  & \forall x, v, w.\; x \fgmapsto[1] v \vs[\emptyset] x \fgmapsto[1] w
\end{align*}
We write $x \fgmapsto v$ for $\exists q.\; x \fgmapsto[q] v$ and $x \gmapsto v$ for $x \fgmapsto[1] v$.
Note that $x \fgmapsto v$ is duplicable but cannot be boxed (as it depends on resources); \ie we have $x \fgmapsto v \Lra x \fgmapsto v * x \fgmapsto v$ but not $x \fgmapsto v \Ra \always x \fgmapsto v$.

To implement this interface, allocate an instance $\gname_G$ of $\FHeap(\textdom{Val})$ and define
\[
	x \fgmapsto[q] v \eqdef
	  \begin{cases}
    	\ownGhost{\gname_G}{x \mapsto (q, v)} & \text{if $q \in (0, 1]$} \\
    	\FALSE & \text{otherwise}
    \end{cases}
\]
The view shifts in the specification follow immediately from \ruleref{GhostUpd} and the frame-preserving updates in~\Sref{sec:fheapm}.
The first implication is immediate from the definition.
The second implication follows by case distinction on $q_1 + q_2 \in (0, 1]$.

Ralf Jung's avatar
Ralf Jung committed
462
463
464
465
466

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: