ltac_tactics.v 97.4 KB
Newer Older
1
From iris.proofmode Require Import coq_tactics reduction.
2
From iris.proofmode Require Import base intro_patterns spec_patterns sel_patterns.
3
From iris.bi Require Export bi telescopes.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
From stdpp Require Import namespaces.
From iris.proofmode Require Export classes notation.
From stdpp Require Import hlist pretty.
Set Default Proof Using "Type".
Export ident.

(** For most of the tactics, we want to have tight control over the order and
way in which type class inference is performed. To that end, many tactics make
use of [notypeclasses refine] and the [iSolveTC] tactic to manually invoke type
class inference.

The tactic [iSolveTC] does not use [apply _], as that often leads to issues
because it will try to solve all evars whose type is a typeclass, in
dependency order (according to Matthieu). If one fails, it aborts. However, we
generally rely on progress on the main goal to be solved to make progress
elsewhere. With [typeclasses eauto], that seems to work better.

A drawback of [typeclasses eauto] is that it is multi-success, i.e. whenever
subsequent tactics fail, it will backtrack to [typeclasses eauto] to try the
next type class instance. This is almost always undesired and leads to poor
performance and horrible error messages, so we wrap it in a [once]. *)
Ltac iSolveTC :=
  solve [once (typeclasses eauto)].

28 29 30
(** Tactic used for solving side-conditions arising from TC resolution in iMod
and iInv. *)
Ltac iSolveSideCondition :=
31
  split_and?; try solve [ fast_done | solve_ndisj ].
32

33 34 35 36 37 38 39
(** Used for printing [string]s and [ident]s. *)
Ltac pretty_ident H :=
  lazymatch H with
  | INamed ?H => H
  | ?H => H
  end.

40 41 42 43 44 45 46 47
(** * Misc *)

Ltac iMissingHyps Hs :=
  let Δ :=
    lazymatch goal with
    | |- envs_entails ?Δ _ => Δ
    | |- context[ envs_split _ _ ?Δ ] => Δ
    end in
48
  let Hhyps := pm_eval (envs_dom Δ) in
49 50 51 52
  eval vm_compute in (list_difference Hs Hhyps).

Ltac iTypeOf H :=
  let Δ := match goal with |- envs_entails ?Δ _ => Δ end in
53
  pm_eval (envs_lookup H Δ).
54 55 56 57 58 59 60 61 62 63 64

Tactic Notation "iMatchHyp" tactic1(tac) :=
  match goal with
  | |- context[ environments.Esnoc _ ?x ?P ] => tac x P
  end.

(** * Start a proof *)
Tactic Notation "iStartProof" :=
  lazymatch goal with
  | |- envs_entails _ _ => idtac
  | |- ?φ => notypeclasses refine (as_emp_valid_2 φ _ _);
65
               [iSolveTC || fail "iStartProof: not a BI assertion"
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
               |apply tac_adequate]
  end.

(* Same as above, with 2 differences :
   - We can specify a BI in which we want the proof to be done
   - If the goal starts with a let or a ∀, they are automatically
     introduced. *)
Tactic Notation "iStartProof" uconstr(PROP) :=
  lazymatch goal with
  | |- @envs_entails ?PROP' _ _ =>
    (* This cannot be shared with the other [iStartProof], because
    type_term has a non-negligeable performance impact. *)
    let x := type_term (eq_refl : @eq Type PROP PROP') in idtac

  (* We eta-expand [as_emp_valid_2], in order to make sure that
     [iStartProof PROP] works even if [PROP] is the carrier type. In
     this case, typing this expression will end up unifying PROP with
     [bi_car _], and hence trigger the canonical structures mechanism
     to find the corresponding bi. *)
  | |- ?φ => notypeclasses refine ((λ P : PROP, @as_emp_valid_2 φ _ P) _ _ _);
86
               [iSolveTC || fail "iStartProof: not a BI assertion"
87 88 89 90 91 92 93 94 95 96 97 98
               |apply tac_adequate]
  end.

(** * Generate a fresh identifier *)
(* Tactic Notation tactics cannot return terms *)
Ltac iFresh :=
  (* We need to increment the environment counter using [tac_fresh].
     But because [iFresh] returns a value, we have to let bind
     [tac_fresh] wrapped under a match to force evaluation of this
     side-effect. See https://stackoverflow.com/a/46178884 *)
  let do_incr :=
      lazymatch goal with
99
      | _ => iStartProof; eapply tac_fresh; first by (pm_reflexivity)
100 101 102
      end in
  lazymatch goal with
  |- envs_entails ?Δ _ =>
103
    let n := pm_eval (env_counter Δ) in
104 105 106 107 108 109 110 111 112 113 114 115 116
    constr:(IAnon n)
  end.

(** * Simplification *)
Tactic Notation "iEval" tactic(t) :=
  iStartProof;
  eapply tac_eval;
    [let x := fresh in intros x; t; unfold x; reflexivity
    |].

Tactic Notation "iEval" tactic(t) "in" constr(H) :=
  iStartProof;
  eapply tac_eval_in with _ H _ _ _;
117
    [pm_reflexivity || fail "iEval:" H "not found"
118
    |let x := fresh in intros x; t; unfold x; reflexivity
119
    |pm_reflexivity
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    |].

Tactic Notation "iSimpl" := iEval simpl.
Tactic Notation "iSimpl" "in" constr(H) := iEval simpl in H.

(* It would be nice to also have an `iSsrRewrite`, however, for this we need to
pass arguments to Ssreflect's `rewrite` like `/= foo /bar` in Ltac, see:

  https://sympa.inria.fr/sympa/arc/coq-club/2018-01/msg00000.html

PMP told me (= Robbert) in person that this is not possible today, but may be
possible in Ltac2. *)

(** * Context manipulation *)
Tactic Notation "iRename" constr(H1) "into" constr(H2) :=
  eapply tac_rename with _ H1 H2 _ _; (* (i:=H1) (j:=H2) *)
136 137 138 139 140 141
    [pm_reflexivity ||
     let H1 := pretty_ident H1 in
     fail "iRename:" H1 "not found"
    |pm_reflexivity ||
     let H2 := pretty_ident H2 in
     fail "iRename:" H2 "not fresh"|].
142 143 144 145 146

Local Inductive esel_pat :=
  | ESelPure
  | ESelIdent : bool  ident  esel_pat.

Ralf Jung's avatar
Ralf Jung committed
147
Local Ltac iElaborateSelPat_go pat Δ Hs :=
148 149 150 151
  lazymatch pat with
  | [] => eval cbv in Hs
  | SelPure :: ?pat =>  iElaborateSelPat_go pat Δ (ESelPure :: Hs)
  | SelPersistent :: ?pat =>
152 153
    let Hs' := pm_eval (env_dom (env_intuitionistic Δ)) in
    let Δ' := pm_eval (envs_clear_persistent Δ) in
154 155
    iElaborateSelPat_go pat Δ' ((ESelIdent true <$> Hs') ++ Hs)
  | SelSpatial :: ?pat =>
156 157
    let Hs' := pm_eval (env_dom (env_spatial Δ)) in
    let Δ' := pm_eval (envs_clear_spatial Δ) in
158 159
    iElaborateSelPat_go pat Δ' ((ESelIdent false <$> Hs') ++ Hs)
  | SelIdent ?H :: ?pat =>
160
    lazymatch pm_eval (envs_lookup_delete false H Δ) with
161
    | Some (?p,_,?Δ') =>  iElaborateSelPat_go pat Δ' (ESelIdent p H :: Hs)
162 163 164
    | None =>
      let H := pretty_ident H in
      fail "iElaborateSelPat:" H "not found"
165 166
    end
  end.
167 168 169
Ltac iElaborateSelPat pat :=
  lazymatch goal with
  | |- envs_entails ?Δ _ =>
170
    let pat := sel_pat.parse pat in iElaborateSelPat_go pat Δ (@nil esel_pat)
171 172 173 174
  end.

Local Ltac iClearHyp H :=
  eapply tac_clear with _ H _ _; (* (i:=H) *)
175 176 177
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iClear:" H "not found"
178
    |pm_reduce; iSolveTC ||
179
     let H := pretty_ident H in
180 181 182 183
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iClear:" H ":" P "not affine and the goal not absorbing"
    |].

184 185 186 187 188 189
Local Ltac iClear_go Hs :=
  lazymatch Hs with
  | [] => idtac
  | ESelPure :: ?Hs => clear; iClear_go Hs
  | ESelIdent _ ?H :: ?Hs => iClearHyp H; iClear_go Hs
  end.
190
Tactic Notation "iClear" constr(Hs) :=
191
  iStartProof; let Hs := iElaborateSelPat Hs in iClear_go Hs.
192 193 194 195 196 197 198

Tactic Notation "iClear" "(" ident_list(xs) ")" constr(Hs) :=
  iClear Hs; clear xs.

(** * Assumptions *)
Tactic Notation "iExact" constr(H) :=
  eapply tac_assumption with _ H _ _; (* (i:=H) *)
199
    [pm_reflexivity ||
200
     let H := pretty_ident H in
201
     fail "iExact:" H "not found"
202
    |iSolveTC ||
203
     let H := pretty_ident H in
204 205
     let P := match goal with |- FromAssumption _ ?P _ => P end in
     fail "iExact:" H ":" P "does not match goal"
206
    |pm_reduce; iSolveTC ||
207
     let H := pretty_ident H in
208 209 210 211 212 213 214 215 216
     fail "iExact:" H "not absorbing and the remaining hypotheses not affine"].

Tactic Notation "iAssumptionCore" :=
  let rec find Γ i P :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?Q => first [unify P Q; unify i j|find Γ i P]
    end in
  match goal with
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
217
     first [is_evar i; fail 1 | pm_reflexivity]
218
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
219
     is_evar i; first [find Γp i P | find Γs i P]; pm_reflexivity
220
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
221
     first [is_evar i; fail 1 | pm_reflexivity]
222
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
223
     is_evar i; first [find Γp i P | find Γs i P]; pm_reflexivity
224 225 226 227 228 229 230 231 232
  end.

Tactic Notation "iAssumption" :=
  let Hass := fresh in
  let rec find p Γ Q :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?P => first
       [pose proof (_ : FromAssumption p P Q) as Hass;
        eapply (tac_assumption _ _ j p P);
233
          [pm_reflexivity
234
          |apply Hass
235
          |pm_reduce; iSolveTC ||
236 237 238
           fail 1 "iAssumption:" j "not absorbing and the remaining hypotheses not affine"]
       |assert (P = False%I) as Hass by reflexivity;
        apply (tac_false_destruct _ j p P);
239
          [pm_reflexivity
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
          |exact Hass]
       |find p Γ Q]
    end in
  lazymatch goal with
  | |- envs_entails (Envs ?Γp ?Γs _) ?Q =>
     first [find true Γp Q | find false Γs Q
           |fail "iAssumption:" Q "not found"]
  end.

(** * False *)
Tactic Notation "iExFalso" := apply tac_ex_falso.

(** * Making hypotheses persistent or pure *)
Local Tactic Notation "iPersistent" constr(H) :=
  eapply tac_persistent with _ H _ _ _; (* (i:=H) *)
255 256 257
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iPersistent:" H "not found"
258
    |iSolveTC ||
259 260
     let P := match goal with |- IntoPersistent _ ?P _ => P end in
     fail "iPersistent:" P "not persistent"
261
    |pm_reduce; iSolveTC ||
262 263
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iPersistent:" P "not affine and the goal not absorbing"
264
    |pm_reflexivity|].
265 266 267

Local Tactic Notation "iPure" constr(H) "as" simple_intropattern(pat) :=
  eapply tac_pure with _ H _ _ _; (* (i:=H1) *)
268 269 270
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iPure:" H "not found"
271
    |iSolveTC ||
272 273
     let P := match goal with |- IntoPure ?P _ => P end in
     fail "iPure:" P "not pure"
274
    |pm_reduce; iSolveTC ||
275 276 277 278 279 280 281
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iPure:" P "not affine and the goal not absorbing"
    |intros pat].

Tactic Notation "iEmpIntro" :=
  iStartProof;
  eapply tac_emp_intro;
282
    [pm_reduce; iSolveTC ||
283 284 285 286 287
     fail "iEmpIntro: spatial context contains non-affine hypotheses"].

Tactic Notation "iPureIntro" :=
  iStartProof;
  eapply tac_pure_intro;
288
    [pm_reflexivity
289
    |iSolveTC ||
290 291 292 293 294 295
     let P := match goal with |- FromPure _ ?P _ => P end in
     fail "iPureIntro:" P "not pure"
    |].

(** Framing *)
Local Ltac iFrameFinish :=
296
  pm_prettify;
297 298 299 300 301 302 303 304 305
  try match goal with
  | |- envs_entails _ True => by iPureIntro
  | |- envs_entails _ emp => iEmpIntro
  end.

Local Ltac iFramePure t :=
  iStartProof;
  let φ := type of t in
  eapply (tac_frame_pure _ _ _ _ t);
306
    [iSolveTC || fail "iFrame: cannot frame" φ
307 308 309 310 311
    |iFrameFinish].

Local Ltac iFrameHyp H :=
  iStartProof;
  eapply tac_frame with _ H _ _ _;
312 313 314
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iFrame:" H "not found"
315
    |iSolveTC ||
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
     let R := match goal with |- Frame _ ?R _ _ => R end in
     fail "iFrame: cannot frame" R
    |iFrameFinish].

Local Ltac iFrameAnyPure :=
  repeat match goal with H : _ |- _ => iFramePure H end.

Local Ltac iFrameAnyPersistent :=
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => repeat iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_intuitionistic Δ)) in go Hs
  end.

Local Ltac iFrameAnySpatial :=
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => try iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_spatial Δ)) in go Hs
  end.

Tactic Notation "iFrame" := iFrameAnySpatial.

Tactic Notation "iFrame" "(" constr(t1) ")" :=
  iFramePure t1.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" :=
  iFramePure t1; iFrame ( t2 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" :=
  iFramePure t1; iFrame ( t2 t3 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ).

364 365 366 367 368 369 370 371 372
Local Ltac iFrame_go Hs :=
  lazymatch Hs with
  | [] => idtac
  | SelPure :: ?Hs => iFrameAnyPure; iFrame_go Hs
  | SelPersistent :: ?Hs => iFrameAnyPersistent; iFrame_go Hs
  | SelSpatial :: ?Hs => iFrameAnySpatial; iFrame_go Hs
  | SelIdent ?H :: ?Hs => iFrameHyp H; iFrame_go Hs
  end.

373
Tactic Notation "iFrame" constr(Hs) :=
374
  let Hs := sel_pat.parse Hs in iFrame_go Hs.
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
Tactic Notation "iFrame" "(" constr(t1) ")" constr(Hs) :=
  iFramePure t1; iFrame Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")"
    constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ) Hs.

(** * Basic introduction tactics *)
Local Tactic Notation "iIntro" "(" simple_intropattern(x) ")" :=
  (* In the case the goal starts with an [let x := _ in _], we do not
     want to unfold x and start the proof mode. Instead, we want to
     use intros. So [iStartProof] has to be called only if [intros]
     fails *)
  intros x ||
    (iStartProof;
     lazymatch goal with
     | |- envs_entails _ _ =>
       eapply tac_forall_intro;
408
       [iSolveTC ||
409 410
              let P := match goal with |- FromForall ?P _ => P end in
              fail "iIntro: cannot turn" P "into a universal quantifier"
411
       |pm_prettify; intros x]
412 413 414 415 416 417 418
     end).

Local Tactic Notation "iIntro" constr(H) :=
  iStartProof;
  first
  [ (* (?Q → _) *)
    eapply tac_impl_intro with _ H _ _ _; (* (i:=H) *)
419
      [iSolveTC
420
      |pm_reduce; iSolveTC ||
421 422 423
       let P := lazymatch goal with |- Persistent ?P => P end in
       fail 1 "iIntro: introducing non-persistent" H ":" P
              "into non-empty spatial context"
424 425 426
      |pm_reflexivity ||
       let H := pretty_ident H in
       fail 1 "iIntro:" H "not fresh"
427
      |iSolveTC
428 429 430
      |]
  | (* (_ -∗ _) *)
    eapply tac_wand_intro with _ H _ _; (* (i:=H) *)
431
      [iSolveTC
432 433 434
      | pm_reflexivity ||
        let H := pretty_ident H in
        fail 1 "iIntro:" H "not fresh"
435 436 437 438 439 440 441 442
      |]
  | fail "iIntro: nothing to introduce" ].

Local Tactic Notation "iIntro" "#" constr(H) :=
  iStartProof;
  first
  [ (* (?P → _) *)
    eapply tac_impl_intro_persistent with _ H _ _ _; (* (i:=H) *)
443 444
      [iSolveTC
      |iSolveTC ||
445 446
       let P := match goal with |- IntoPersistent _ ?P _ => P end in
       fail 1 "iIntro:" P "not persistent"
447 448 449
      |pm_reflexivity ||
       let H := pretty_ident H in
       fail 1 "iIntro:" H "not fresh"
450 451 452
      |]
  | (* (?P -∗ _) *)
    eapply tac_wand_intro_persistent with _ H _ _ _; (* (i:=H) *)
453 454
      [ iSolveTC
      | iSolveTC ||
455 456
       let P := match goal with |- IntoPersistent _ ?P _ => P end in
       fail 1 "iIntro:" P "not persistent"
457
      |iSolveTC ||
458 459
       let P := match goal with |- TCOr (Affine ?P) _ => P end in
       fail 1 "iIntro:" P "not affine and the goal not absorbing"
460 461 462
      |pm_reflexivity ||
       let H := pretty_ident H in
       fail 1 "iIntro:" H "not fresh"
463 464 465 466 467 468 469
      |]
  | fail "iIntro: nothing to introduce" ].

Local Tactic Notation "iIntro" "_" :=
  first
  [ (* (?Q → _) *)
    iStartProof; eapply tac_impl_intro_drop;
470
    [ iSolveTC | ]
471 472
  | (* (_ -∗ _) *)
    iStartProof; eapply tac_wand_intro_drop;
473 474
      [ iSolveTC
      | iSolveTC ||
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
       let P := match goal with |- TCOr (Affine ?P) _ => P end in
       fail 1 "iIntro:" P "not affine and the goal not absorbing"
      |]
  | (* (∀ _, _) *) iIntro (_)
  | fail 1 "iIntro: nothing to introduce" ].

Local Tactic Notation "iIntroForall" :=
  lazymatch goal with
  | |-  _, ?P => fail (* actually an →, this is handled by iIntro below *)
  | |-  _, _ => intro
  | |- let _ := _ in _ => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ ( x : _, _) => let x' := fresh x in iIntro (x')
    end
  end.
Local Tactic Notation "iIntro" :=
  lazymatch goal with
  | |- _  ?P => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ (_ - _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    | |- envs_entails _ (_  _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    end
  end.

(** * Specialize *)
Record iTrm {X As S} :=
  ITrm { itrm : X ; itrm_vars : hlist As ; itrm_hyps : S }.
Arguments ITrm {_ _ _} _ _ _.

Notation "( H $! x1 .. xn )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) "") (at level 0, x1, xn at level 9).
Notation "( H $! x1 .. xn 'with' pat )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) pat) (at level 0, x1, xn at level 9).
Notation "( H 'with' pat )" := (ITrm H hnil pat) (at level 0).

(** There is some hacky stuff going on here: because of Coq bug #6583, unresolved
type classes in the arguments `xs` are resolved at arbitrary moments. Tactics
like `apply`, `split` and `eexists` wrongly trigger type class search to resolve
these holes. To avoid TC being triggered too eagerly, this tactic uses `refine`
at most places instead of `apply`. *)
519
Local Ltac iSpecializeArgs_go H xs :=
520 521 522 523
    lazymatch xs with
    | hnil => idtac
    | hcons ?x ?xs =>
       notypeclasses refine (tac_forall_specialize _ _ H _ _ _ _ _ _ _);
524 525 526
         [pm_reflexivity ||
          let H := pretty_ident H in
          fail "iSpecialize:" H "not found"
527 528 529 530 531 532
         |iSolveTC ||
          let P := match goal with |- IntoForall ?P _ => P end in
          fail "iSpecialize: cannot instantiate" P "with" x
         |lazymatch goal with (* Force [A] in [ex_intro] to deal with coercions. *)
          | |-  _ : ?A, _ =>
            notypeclasses refine (@ex_intro A _ x (conj _ _))
533 534 535 536
          end; [shelve..|pm_reflexivity|iSpecializeArgs_go H xs]]
    end.
Local Tactic Notation "iSpecializeArgs" constr(H) open_constr(xs) :=
  iSpecializeArgs_go H xs.
537

538
Ltac iSpecializePat_go H1 pats :=
539 540 541 542 543 544 545 546 547 548 549 550
  let solve_to_wand H1 :=
    iSolveTC ||
    let P := match goal with |- IntoWand _ _ ?P _ _ => P end in
    fail "iSpecialize:" P "not an implication/wand" in
  let solve_done d :=
    lazymatch d with
    | true =>
       done ||
       let Q := match goal with |- envs_entails _ ?Q => Q end in
       fail "iSpecialize: cannot solve" Q "using done"
    | false => idtac
    end in
551
  lazymatch pats with
552 553 554
    | [] => idtac
    | SForall :: ?pats =>
       idtac "[IPM] The * specialization pattern is deprecated because it is applied implicitly.";
555
       iSpecializePat_go H1 pats
556 557
    | SIdent ?H2 :: ?pats =>
       notypeclasses refine (tac_specialize _ _ _ H2 _ H1 _ _ _ _ _ _ _ _ _ _);
558 559 560 561 562 563
         [pm_reflexivity ||
          let H2 := pretty_ident H2 in
          fail "iSpecialize:" H2 "not found"
         |pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
564 565 566 567
         |iSolveTC ||
          let P := match goal with |- IntoWand _ _ ?P ?Q _ => P end in
          let Q := match goal with |- IntoWand _ _ ?P ?Q _ => Q end in
          fail "iSpecialize: cannot instantiate" P "with" Q
568
         |pm_reflexivity|iSpecializePat_go H1 pats]
569 570
    | SPureGoal ?d :: ?pats =>
       notypeclasses refine (tac_specialize_assert_pure _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
571 572 573
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
574 575 576 577
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- FromPure _ ?Q _ => Q end in
          fail "iSpecialize:" Q "not pure"
578
         |pm_reflexivity
579
         |solve_done d (*goal*)
580
         |iSpecializePat_go H1 pats]
581 582
    | SGoal (SpecGoal GPersistent false ?Hs_frame [] ?d) :: ?pats =>
       notypeclasses refine (tac_specialize_assert_persistent _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
583 584 585
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
586 587 588 589 590
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
         |iSolveTC
591
         |pm_reflexivity
592
         |iFrame Hs_frame; solve_done d (*goal*)
593
         |iSpecializePat_go H1 pats]
594 595 596 597 598
    | SGoal (SpecGoal GPersistent _ _ _ _) :: ?pats =>
       fail "iSpecialize: cannot select hypotheses for persistent premise"
    | SGoal (SpecGoal ?m ?lr ?Hs_frame ?Hs ?d) :: ?pats =>
       let Hs' := eval cbv in (if lr then Hs else Hs_frame ++ Hs) in
       notypeclasses refine (tac_specialize_assert _ _ _ _ H1 _ lr Hs' _ _ _ _ _ _ _ _ _ _ _);
599 600 601
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
602 603 604 605 606
         |solve_to_wand H1
         |lazymatch m with
          | GSpatial => notypeclasses refine (add_modal_id _ _)
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
607
         |pm_reflexivity ||
608 609 610
          let Hs' := iMissingHyps Hs' in
          fail "iSpecialize: hypotheses" Hs' "not found"
         |iFrame Hs_frame; solve_done d (*goal*)
611
         |iSpecializePat_go H1 pats]
612 613
    | SAutoFrame GPersistent :: ?pats =>
       notypeclasses refine (tac_specialize_assert_persistent _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
614 615 616
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
617 618 619 620
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
621
         |pm_reflexivity
622
         |solve [iFrame "∗ #"]
623
         |iSpecializePat_go H1 pats]
624 625
    | SAutoFrame ?m :: ?pats =>
       notypeclasses refine (tac_specialize_frame _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
626 627 628
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
629 630 631 632 633 634 635 636 637 638
         |solve_to_wand H1
         |lazymatch m with
          | GSpatial => notypeclasses refine (add_modal_id _ _)
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
         |first
            [notypeclasses refine (tac_unlock_emp _ _ _)
            |notypeclasses refine (tac_unlock_True _ _ _)
            |iFrame "∗ #"; notypeclasses refine (tac_unlock _ _ _)
            |fail "iSpecialize: premise cannot be solved by framing"]
639 640 641 642 643
         |exact eq_refl]; iIntro H1; iSpecializePat_go H1 pats
    end.

Local Tactic Notation "iSpecializePat" open_constr(H) constr(pat) :=
  let pats := spec_pat.parse pat in iSpecializePat_go H pats.
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

(* The argument [p] denotes whether the conclusion of the specialized term is
persistent. If so, one can use all spatial hypotheses for both proving the
premises and the remaning goal. The argument [p] can either be a Boolean or an
introduction pattern, which will be coerced into [true] when it solely contains
`#` or `%` patterns at the top-level.

In case the specialization pattern in [t] states that the modality of the goal
should be kept for one of the premises (i.e. [>[H1 .. Hn]] is used) then [p]
defaults to [false] (i.e. spatial hypotheses are not preserved). *)
Tactic Notation "iSpecializeCore" open_constr(H)
    "with" open_constr(xs) open_constr(pat) "as" constr(p) :=
  let p := intro_pat_persistent p in
  let pat := spec_pat.parse pat in
  let H :=
    lazymatch type of H with
    | string => constr:(INamed H)
    | _ => H
    end in
  iSpecializeArgs H xs; [..|
  lazymatch type of H with
  | ident =>
    (* The lemma [tac_specialize_persistent_helper] allows one to use all
    spatial hypotheses for both proving the premises of the lemma we
    specialize as well as those of the remaining goal. We can only use it when
    the result of the specialization is persistent, and no modality is
    eliminated. As an optimization, we do not use this when only universal
    quantifiers are instantiated. *)
    let pat := spec_pat.parse pat in
    lazymatch eval compute in
      (p && bool_decide (pat  []) && negb (existsb spec_pat_modal pat)) with
    | true =>
       (* FIXME: do something reasonable when the BI is not affine *)
       notypeclasses refine (tac_specialize_persistent_helper _ _ H _ _ _ _ _ _ _ _ _ _ _);
678 679 680
         [pm_reflexivity ||
          let H := pretty_ident H in
          fail "iSpecialize:" H "not found"
681 682
         |iSpecializePat H pat;
           [..
Ralf Jung's avatar
Ralf Jung committed
683
           |notypeclasses refine (tac_specialize_persistent_helper_done _ H _ _ _);
684
            pm_reflexivity]
685 686 687
         |iSolveTC ||
          let Q := match goal with |- IntoPersistent _ ?Q _ => Q end in
          fail "iSpecialize:" Q "not persistent"
688
         |pm_reduce; iSolveTC ||
689 690
          let Q := match goal with |- TCAnd _ (Affine ?Q) => Q end in
          fail "iSpecialize:" Q "not affine"
691
         |pm_reflexivity
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
         |(* goal *)]
    | false => iSpecializePat H pat
    end
  | _ => fail "iSpecialize:" H "should be a hypothesis, use iPoseProof instead"
  end].

Tactic Notation "iSpecializeCore" open_constr(t) "as" constr(p) :=
  lazymatch type of t with
  | string => iSpecializeCore t with hnil "" as p
  | ident => iSpecializeCore t with hnil "" as p
  | _ =>
    lazymatch t with
    | ITrm ?H ?xs ?pat => iSpecializeCore H with xs pat as p
    | _ => fail "iSpecialize:" t "should be a proof mode term"
    end
  end.

Tactic Notation "iSpecialize" open_constr(t) :=
  iSpecializeCore t as false.
Tactic Notation "iSpecialize" open_constr(t) "as" "#" :=
  iSpecializeCore t as true.

(** * Pose proof *)
(* The tactic [iIntoEmpValid] tactic solves a goal [bi_emp_valid Q]. The
argument [t] must be a Coq term whose type is of the following shape:

[∀ (x_1 : A_1) .. (x_n : A_n), φ]

and so that we have an instance `AsValid φ Q`.

Examples of such [φ]s are

- [bi_emp_valid P], in which case [Q] should be [P]
- [P1 ⊢ P2], in which case [Q] should be [P1 -∗ P2]
- [P1 ⊣⊢ P2], in which case [Q] should be [P1 ↔ P2]

The tactic instantiates each dependent argument [x_i] with an evar and generates
a goal [R] for each non-dependent argument [x_i : R].  For example, if the
original goal was [Q] and [t] has type [∀ x, P x → Q], then it generates an evar
[?x] for [x] and a subgoal [P ?x]. *)
Tactic Notation "iIntoEmpValid" open_constr(t) :=
  let rec go t :=
    (* We try two reduction tactics for the type of t before trying to
       specialize it. We first try the head normal form in order to
       unfold all the definition that could hide an entailment.  Then,
       we try the much weaker [eval cbv zeta], because entailment is
       not necessarilly opaque, and could be unfolded by [hnf].

       However, for calling type class search, we only use [cbv zeta]
       in order to make sure we do not unfold [bi_emp_valid]. *)
    let tT := type of t in
    first
      [ let tT' := eval hnf in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in
        notypeclasses refine (as_emp_valid_1 tT _ _);
748
          [iSolveTC || fail 1 "iPoseProof: not a BI assertion"
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
          |exact t]]
  with go_specialize t tT :=
    lazymatch tT with                (* We do not use hnf of tT, because, if
                                        entailment is not opaque, then it would
                                        unfold it. *)
    | ?P  ?Q => let H := fresh in assert P as H; [|go uconstr:(t H); clear H]
    |  _ : ?T, _ =>
      (* Put [T] inside an [id] to avoid TC inference from being invoked. *)
      (* This is a workarround for Coq bug #6583. *)
      let e := fresh in evar (e:id T);
      let e' := eval unfold e in e in clear e; go (t e')
    end
  in
  go t.

(* The tactic [tac] is called with a temporary fresh name [H]. The argument
[lazy_tc] denotes whether type class inference on the premises of [lem] should
be performed before (if false) or after (if true) [tac H] is called.

The tactic [iApply] uses laxy type class inference, so that evars can first be
instantiated by matching with the goal, whereas [iDestruct] does not, because
eliminations may not be performed when type classes have not been resolved.
*)
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
Local Ltac iPoseProofCore_go Htmp t goal_tac :=
  lazymatch type of t with
  | ident =>
    eapply tac_pose_proof_hyp with _ _ t _ Htmp _;
    [pm_reflexivity ||
     let t := pretty_ident t in
     fail "iPoseProof:" t "not found"
    |pm_reflexivity ||
     let Htmp := pretty_ident Htmp in
     fail "iPoseProof:" Htmp "not fresh"
    |goal_tac ()]
  | _ =>
    eapply tac_pose_proof with _ Htmp _; (* (j:=H) *)
    [iIntoEmpValid t
    |pm_reflexivity ||
     let Htmp := pretty_ident Htmp in
     fail "iPoseProof:" Htmp "not fresh"
    |goal_tac ()]
  end;
  try iSolveTC.
792 793 794 795 796 797 798 799 800 801 802 803
Tactic Notation "iPoseProofCore" open_constr(lem)
    "as" constr(p) constr(lazy_tc) tactic(tac) :=
  iStartProof;
  let Htmp := iFresh in
  let t := lazymatch lem with ITrm ?t ?xs ?pat => t | _ => lem end in
  let t := lazymatch type of t with string => constr:(INamed t) | _ => t end in
  let spec_tac _ :=
    lazymatch lem with
    | ITrm ?t ?xs ?pat => iSpecializeCore (ITrm Htmp xs pat) as p
    | _ => idtac
    end in
  lazymatch eval compute in lazy_tc with
804 805
  | true => iPoseProofCore_go Htmp t ltac:(fun _ => spec_tac (); last (tac Htmp))
  | false => iPoseProofCore_go Htmp t spec_tac; last (tac Htmp)
806 807 808 809 810 811
  end.

(** * Apply *)
Tactic Notation "iApplyHyp" constr(H) :=
  let rec go H := first
    [eapply tac_apply with _ H _ _ _;
812
      [pm_reflexivity
813
      |iSolveTC
814 815
      |pm_prettify (* reduce redexes created by instantiation *)
      ]
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
    |iSpecializePat H "[]"; last go H] in
  iExact H ||
  go H ||
  lazymatch iTypeOf H with
  | Some (_,?Q) => fail "iApply: cannot apply" Q
  end.

Tactic Notation "iApply" open_constr(lem) :=
  iPoseProofCore lem as false true (fun H => iApplyHyp H).

(** * Revert *)
Local Tactic Notation "iForallRevert" ident(x) :=
  let err x :=
    intros x;
    iMatchHyp (fun H P =>
      lazymatch P with
      | context [x] => fail 2 "iRevert:" x "is used in hypothesis" H
      end) in
  iStartProof;
  let A := type of x in
  lazymatch type of A with
  | Prop => revert x; first [apply tac_pure_revert|err x]
  | _ => revert x; first [apply tac_forall_revert|err x]
  end.

Tactic Notation "iRevert" constr(Hs) :=
  let rec go Hs :=
    lazymatch Hs with
    | [] => idtac
    | ESelPure :: ?Hs =>
       repeat match goal with x : _ |- _ => revert x end;
       go Hs
    | ESelIdent _ ?H :: ?Hs =>
       eapply tac_revert with _ H _ _; (* (i:=H2) *)
850 851 852
         [pm_reflexivity ||
          let H := pretty_ident H in
          fail "iRevert:" H "not found"
853
         |pm_reduce; go Hs]
854
    end in
855
  iStartProof; let Hs := iElaborateSelPat Hs in go Hs.
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917

Tactic Notation "iRevert" "(" ident(x1) ")" :=
  iForallRevert x1.
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" :=
  iForallRevert x2; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" :=
  iForallRevert x3; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")" :=
  iForallRevert x4; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" :=
  iForallRevert x5; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" :=
  iForallRevert x6; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" :=
  iForallRevert x7; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" :=
  iForallRevert x8; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).

Tactic Notation "iRevert" "(" ident(x1) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")"
    constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 ).

(** * Disjunction *)
Tactic Notation "iLeft" :=
  iStartProof;
  eapply tac_or_l;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iLeft:" P "not a disjunction"
    |].
Tactic Notation "iRight" :=
  iStartProof;
  eapply tac_or_r;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iRight:" P "not a disjunction"
    |].

Local Tactic Notation "iOrDestruct" constr(H) "as" constr(H1) constr(H2) :=
  eapply tac_or_destruct with _ _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
918 919 920
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iOrDestruct:" H "not found"
921 922 923
    |iSolveTC ||
     let P := match goal with |- IntoOr ?P _ _ => P end in
     fail "iOrDestruct: cannot destruct" P
924 925 926 927 928 929
    |pm_reflexivity ||
     let H1 := pretty_ident H1 in
     fail "iOrDestruct:" H1 "not fresh"
    |pm_reflexivity ||
     let H2 := pretty_ident H2 in
     fail "iOrDestruct:" H2 "not fresh"
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
    | |].

(** * Conjunction and separating conjunction *)
Tactic Notation "iSplit" :=
  iStartProof;
  eapply tac_and_split;
    [iSolveTC ||
     let P := match goal with |- FromAnd ?P _ _ => P end in
     fail "iSplit:" P "not a conjunction"| |].

Tactic Notation "iSplitL" constr(Hs) :=
  iStartProof;
  let Hs := words Hs in
  let Hs := eval vm_compute in (INamed <$> Hs) in
  eapply tac_sep_split with _ _ Left Hs _ _; (* (js:=Hs) *)
    [iSolveTC ||
     let P := match goal with |- FromSep _ ?P _ _ => P end in
     fail "iSplitL:" P "not a separating conjunction"
948
    |pm_reflexivity ||
949 950 951 952 953 954 955 956 957 958 959 960
     let Hs := iMissingHyps Hs in
     fail "iSplitL: hypotheses" Hs "not found"
    | |].

Tactic Notation "iSplitR" constr(Hs) :=
  iStartProof;
  let Hs := words Hs in
  let Hs := eval vm_compute in (INamed <$> Hs) in
  eapply tac_sep_split with _ _ Right Hs _ _; (* (js:=Hs) *)
    [iSolveTC ||
     let P := match goal with |- FromSep _ ?P _ _ => P end in
     fail "iSplitR:" P "not a separating conjunction"
961
    |pm_reflexivity ||
962 963 964 965 966 967 968 969 970
     let Hs := iMissingHyps Hs in
     fail "iSplitR: hypotheses" Hs "not found"
    | |].

Tactic Notation "iSplitL" := iSplitR "".
Tactic Notation "iSplitR" := iSplitL "".

Local Tactic Notation "iAndDestruct" constr(H) "as" constr(H1) constr(H2) :=
  eapply tac_and_destruct with _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
971 972 973
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iAndDestruct:" H "not found"
974
    |pm_reduce; iSolveTC ||
975 976 977 978 979 980
     let P :=
       lazymatch goal with
       | |- IntoSep ?P _ _ => P
       | |- IntoAnd _ ?P _ _ => P
       end in
     fail "iAndDestruct: cannot destruct" P
981 982 983 984
    |pm_reflexivity ||
     let H1 := pretty_ident H1 in
     let H2 := pretty_ident H2 in
     fail "iAndDestruct:" H1 "or" H2 " not fresh"|].
985 986 987

Local Tactic Notation "iAndDestructChoice" constr(H) "as" constr(d) constr(H') :=
  eapply tac_and_destruct_choice with _ H _ d H' _ _ _;
988 989
    [pm_reflexivity || fail "iAndDestructChoice:" H "not found"
    |pm_reduce; iSolveTC ||
990 991
     let P := match goal with |- TCOr (IntoAnd _ ?P _ _) _ => P end in
     fail "iAndDestructChoice: cannot destruct" P
992 993 994
    |pm_reflexivity ||
     let H' := pretty_ident H' in
     fail "iAndDestructChoice:" H' " not fresh"|].
995 996 997 998 999 1000 1001 1002

(** * Existential *)
Tactic Notation "iExists" uconstr(x1) :=
  iStartProof;
  eapply tac_exist;
    [iSolveTC ||
     let P := match goal with |- FromExist ?P _ => P end in
     fail "iExists:" P "not an existential"
1003
    |pm_prettify; eexists x1].
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) :=
  iExists x1; iExists x2.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) :=
  iExists x1; iExists x2, x3.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) :=
  iExists x1; iExists x2, x3, x4.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) :=
  iExists x1; iExists x2, x3, x4, x5.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) :=
  iExists x1; iExists x2, x3, x4, x5, x6.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) "," uconstr(x7) :=
  iExists x1; iExists x2, x3, x4, x5, x6, x7.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) "," uconstr(x7) ","
    uconstr(x8) :=
  iExists x1; iExists x2, x3, x4, x5, x6, x7, x8.

Local Tactic Notation "iExistDestruct" constr(H)
    "as" simple_intropattern(x) constr(Hx) :=
  eapply tac_exist_destruct with H _ Hx _ _; (* (i:=H) (j:=Hx) *)
1029 1030 1031
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iExistDestruct:" H "not found"
1032 1033 1034 1035 1036
    |iSolveTC ||
     let P := match goal with |- IntoExist ?P _ => P end in
     fail "iExistDestruct: cannot destruct" P|];
  let y := fresh in
  intros y; eexists; split;
1037 1038 1039
    [pm_reflexivity ||
     let Hx := pretty_ident Hx in
     fail "iExistDestruct:" Hx "not fresh"
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    |revert y; intros x].

(** * Modality introduction *)
Tactic Notation "iModIntro" uconstr(sel) :=
  iStartProof;
  notypeclasses refine (tac_modal_intro _ sel _ _ _ _ _ _ _ _ _ _ _ _ _);
    [iSolveTC ||
     fail "iModIntro: the goal is not a modality"
    |iSolveTC ||
     let s := lazymatch goal with |- IntoModalPersistentEnv _ _ _ ?s => s end in
     lazymatch eval hnf in s with
     | MIEnvForall ?C => fail "iModIntro: persistent context does not satisfy" C
     | MIEnvIsEmpty => fail "iModIntro: persistent context is non-empty"
     end
    |iSolveTC ||
Robbert Krebbers's avatar
Robbert Krebbers committed
1055
     let s := lazymatch goal with |- IntoModalSpatialEnv _ _ _ ?s _ => s end in
1056 1057 1058 1059
     lazymatch eval hnf in s with
     | MIEnvForall ?C => fail "iModIntro: spatial context does not satisfy" C
     | MIEnvIsEmpty => fail "iModIntro: spatial context is non-empty"
     end
1060
    |pm_reduce; iSolveTC ||
1061
     fail "iModIntro: cannot filter spatial context when goal is not absorbing"
1062 1063
    |pm_prettify (* reduce redexes created by instantiation *)
    ].
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
Tactic Notation "iModIntro" := iModIntro _.
Tactic Notation "iAlways" := iModIntro.

(** * Later *)
Tactic Notation "iNext" open_constr(n) := iModIntro (^n _)%I.
Tactic Notation "iNext" := iModIntro (^_ _)%I.

(** * Update modality *)
Tactic Notation "iModCore" constr(H) :=
  eapply tac_modal_elim with _ H _ _ _ _ _ _;
1074
    [pm_reflexivity || fail "iMod:" H "not found"
1075 1076 1077 1078
    |iSolveTC ||
     let P := match goal with |- ElimModal _ _ _ ?P _ _ _ => P end in
     let Q := match goal with |- ElimModal _ _ _ _ _ ?Q _ => Q end in
     fail "iMod: cannot eliminate modality " P "in" Q
1079
    |iSolveSideCondition
1080
    |pm_reflexivity|].
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

(** * Basic destruct tactic *)
Tactic Notation "iDestructHyp" constr(H) "as" constr(pat) :=
  let rec go Hz pat :=
    lazymatch pat with
    | IAnom =>
       lazymatch Hz with
       | IAnon _ => idtac
       | INamed ?Hz => let Hz' := iFresh in iRename Hz into Hz'
       end
    | IDrop => iClearHyp Hz
    | IFrame => iFrameHyp Hz
    | IIdent ?y => iRename Hz into y
    | IList [[]] => iExFalso; iExact Hz
    | IList [[?pat1; IDrop]] => iAndDestructChoice Hz as Left Hz; go Hz pat1
    | IList [[IDrop; ?pat2]] => iAndDestructChoice Hz as Right Hz; go Hz pat2
    | IList [[?pat1; ?pat2]] =>
       let Hy := iFresh in iAndDestruct Hz as Hz Hy; go Hz pat1; go Hy pat2
    | IList [[?pat1];[?pat2]] => iOrDestruct Hz as Hz Hz; [go Hz pat1|go Hz pat2]
    | IPureElim => iPure Hz as ?
    | IRewrite Right => iPure Hz as ->
    | IRewrite Left => iPure Hz as <-
    | IAlwaysElim ?pat => iPersistent Hz; go Hz pat
    | IModalElim ?pat => iModCore Hz; go Hz pat
    | _ => fail "iDestruct:" pat "invalid"
    end in
  let rec find_pat found pats :=
    lazymatch pats with
    | [] =>
      lazymatch found with
1111
      | true => pm_prettify (* post-tactic prettification *)
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
      | false => fail "iDestruct:" pat "should contain exactly one proper introduction pattern"
      end
    | ISimpl :: ?pats => simpl; find_pat found pats
    | IClear ?H :: ?pats => iClear H; find_pat found pats
    | IClearFrame ?H :: ?pats => iFrame H; find_pat found pats
    | ?pat :: ?pats =>
       lazymatch found with
       | false => go H pat; find_pat true pats
       | true => fail "iDestruct:" pat "should contain exactly one proper introduction pattern"
       end
    end in
  let pats := intro_pat.parse pat in
  find_pat false pats.

Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1) ")"
    constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as @ pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) ")" constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 ) pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)