ltac_tactics.v 89.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
From iris.proofmode Require Import coq_tactics.
From iris.proofmode Require Import base intro_patterns spec_patterns sel_patterns.
From iris.bi Require Export bi.
From stdpp Require Import namespaces.
From iris.proofmode Require Export classes notation.
From stdpp Require Import hlist pretty.
Set Default Proof Using "Type".
Export ident.

Declare Reduction env_cbv := cbv [
  option_bind
  beq ascii_beq string_beq positive_beq Pos.succ ident_beq
  env_lookup env_lookup_delete env_delete env_app env_replace env_dom
  env_intuitionistic env_spatial env_counter env_spatial_is_nil envs_dom
  envs_lookup envs_lookup_delete envs_delete envs_snoc envs_app
    envs_simple_replace envs_replace envs_split
    envs_clear_spatial envs_clear_persistent envs_incr_counter
    envs_split_go envs_split prop_of_env].
Ltac env_cbv :=
  match goal with |- ?u => let v := eval env_cbv in u in change v end.
Ltac env_reflexivity := env_cbv; exact eq_refl.

(** For most of the tactics, we want to have tight control over the order and
way in which type class inference is performed. To that end, many tactics make
use of [notypeclasses refine] and the [iSolveTC] tactic to manually invoke type
class inference.

The tactic [iSolveTC] does not use [apply _], as that often leads to issues
because it will try to solve all evars whose type is a typeclass, in
dependency order (according to Matthieu). If one fails, it aborts. However, we
generally rely on progress on the main goal to be solved to make progress
elsewhere. With [typeclasses eauto], that seems to work better.

A drawback of [typeclasses eauto] is that it is multi-success, i.e. whenever
subsequent tactics fail, it will backtrack to [typeclasses eauto] to try the
next type class instance. This is almost always undesired and leads to poor
performance and horrible error messages, so we wrap it in a [once]. *)
Ltac iSolveTC :=
  solve [once (typeclasses eauto)].

(** * Misc *)

Ltac iMissingHyps Hs :=
  let Δ :=
    lazymatch goal with
    | |- envs_entails ?Δ _ => Δ
    | |- context[ envs_split _ _ ?Δ ] => Δ
    end in
  let Hhyps := eval env_cbv in (envs_dom Δ) in
  eval vm_compute in (list_difference Hs Hhyps).

Ltac iTypeOf H :=
  let Δ := match goal with |- envs_entails ?Δ _ => Δ end in
  eval env_cbv in (envs_lookup H Δ).

Tactic Notation "iMatchHyp" tactic1(tac) :=
  match goal with
  | |- context[ environments.Esnoc _ ?x ?P ] => tac x P
  end.

(** * Start a proof *)
Tactic Notation "iStartProof" :=
  lazymatch goal with
  | |- envs_entails _ _ => idtac
  | |- ?φ => notypeclasses refine (as_emp_valid_2 φ _ _);
               [apply _ || fail "iStartProof: not a Bi entailment"
               |apply tac_adequate]
  end.

(* Same as above, with 2 differences :
   - We can specify a BI in which we want the proof to be done
   - If the goal starts with a let or a ∀, they are automatically
     introduced. *)
Tactic Notation "iStartProof" uconstr(PROP) :=
  lazymatch goal with
  | |- @envs_entails ?PROP' _ _ =>
    (* This cannot be shared with the other [iStartProof], because
    type_term has a non-negligeable performance impact. *)
    let x := type_term (eq_refl : @eq Type PROP PROP') in idtac

  (* We eta-expand [as_emp_valid_2], in order to make sure that
     [iStartProof PROP] works even if [PROP] is the carrier type. In
     this case, typing this expression will end up unifying PROP with
     [bi_car _], and hence trigger the canonical structures mechanism
     to find the corresponding bi. *)
  | |- ?φ => notypeclasses refine ((λ P : PROP, @as_emp_valid_2 φ _ P) _ _ _);
               [apply _ || fail "iStartProof: not a Bi entailment"
               |apply tac_adequate]
  end.

(** * Generate a fresh identifier *)
(* Tactic Notation tactics cannot return terms *)
Ltac iFresh :=
  (* We need to increment the environment counter using [tac_fresh].
     But because [iFresh] returns a value, we have to let bind
     [tac_fresh] wrapped under a match to force evaluation of this
     side-effect. See https://stackoverflow.com/a/46178884 *)
  let do_incr :=
      lazymatch goal with
      | _ => iStartProof; eapply tac_fresh; first by (env_reflexivity)
      end in
  lazymatch goal with
  |- envs_entails ?Δ _ =>
    let n := eval env_cbv in (env_counter Δ) in
    constr:(IAnon n)
  end.

(** * Simplification *)
Tactic Notation "iEval" tactic(t) :=
  iStartProof;
  eapply tac_eval;
    [let x := fresh in intros x; t; unfold x; reflexivity
    |].

Tactic Notation "iEval" tactic(t) "in" constr(H) :=
  iStartProof;
  eapply tac_eval_in with _ H _ _ _;
    [env_reflexivity || fail "iEval:" H "not found"
    |let x := fresh in intros x; t; unfold x; reflexivity
    |env_reflexivity
    |].

Tactic Notation "iSimpl" := iEval simpl.
Tactic Notation "iSimpl" "in" constr(H) := iEval simpl in H.

(* It would be nice to also have an `iSsrRewrite`, however, for this we need to
pass arguments to Ssreflect's `rewrite` like `/= foo /bar` in Ltac, see:

  https://sympa.inria.fr/sympa/arc/coq-club/2018-01/msg00000.html

PMP told me (= Robbert) in person that this is not possible today, but may be
possible in Ltac2. *)

(** * Context manipulation *)
Tactic Notation "iRename" constr(H1) "into" constr(H2) :=
  eapply tac_rename with _ H1 H2 _ _; (* (i:=H1) (j:=H2) *)
    [env_reflexivity || fail "iRename:" H1 "not found"
    |env_reflexivity || fail "iRename:" H2 "not fresh"|].

Local Inductive esel_pat :=
  | ESelPure
  | ESelIdent : bool  ident  esel_pat.

Ltac iElaborateSelPat pat :=
  let rec go pat Δ Hs :=
    lazymatch pat with
    | [] => eval cbv in Hs
    | SelPure :: ?pat => go pat Δ (ESelPure :: Hs)
    | SelPersistent :: ?pat =>
       let Hs' := eval env_cbv in (env_dom (env_intuitionistic Δ)) in
       let Δ' := eval env_cbv in (envs_clear_persistent Δ) in
       go pat Δ' ((ESelIdent true <$> Hs') ++ Hs)
    | SelSpatial :: ?pat =>
       let Hs' := eval env_cbv in (env_dom (env_spatial Δ)) in
       let Δ' := eval env_cbv in (envs_clear_spatial Δ) in
       go pat Δ' ((ESelIdent false <$> Hs') ++ Hs)
    | SelIdent ?H :: ?pat =>
       lazymatch eval env_cbv in (envs_lookup_delete false H Δ) with
       | Some (?p,_,?Δ') => go pat Δ' (ESelIdent p H :: Hs)
       | None => fail "iElaborateSelPat:" H "not found"
       end
    end in
  lazymatch goal with
  | |- envs_entails ?Δ _ =>
    let pat := sel_pat.parse pat in go pat Δ (@nil esel_pat)
  end.

Local Ltac iClearHyp H :=
  eapply tac_clear with _ H _ _; (* (i:=H) *)
    [env_reflexivity || fail "iClear:" H "not found"
    |env_cbv; apply _ ||
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iClear:" H ":" P "not affine and the goal not absorbing"
    |].

Tactic Notation "iClear" constr(Hs) :=
  let rec go Hs :=
    lazymatch Hs with
    | [] => idtac
    | ESelPure :: ?Hs => clear; go Hs
    | ESelIdent _ ?H :: ?Hs => iClearHyp H; go Hs
    end in
  let Hs := iElaborateSelPat Hs in iStartProof; go Hs.

Tactic Notation "iClear" "(" ident_list(xs) ")" constr(Hs) :=
  iClear Hs; clear xs.

(** * Assumptions *)
Tactic Notation "iExact" constr(H) :=
  eapply tac_assumption with _ H _ _; (* (i:=H) *)
    [env_reflexivity || fail "iExact:" H "not found"
    |apply _ ||
     let P := match goal with |- FromAssumption _ ?P _ => P end in
     fail "iExact:" H ":" P "does not match goal"
    |env_cbv; apply _ ||
     fail "iExact:" H "not absorbing and the remaining hypotheses not affine"].

Tactic Notation "iAssumptionCore" :=
  let rec find Γ i P :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?Q => first [unify P Q; unify i j|find Γ i P]
    end in
  match goal with
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
     first [is_evar i; fail 1 | env_reflexivity]
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
     is_evar i; first [find Γp i P | find Γs i P]; env_reflexivity
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
     first [is_evar i; fail 1 | env_reflexivity]
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
     is_evar i; first [find Γp i P | find Γs i P]; env_reflexivity
  end.

Tactic Notation "iAssumption" :=
  let Hass := fresh in
  let rec find p Γ Q :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?P => first
       [pose proof (_ : FromAssumption p P Q) as Hass;
        eapply (tac_assumption _ _ j p P);
          [env_reflexivity
          |apply Hass
          |env_cbv; apply _ ||
           fail 1 "iAssumption:" j "not absorbing and the remaining hypotheses not affine"]
       |assert (P = False%I) as Hass by reflexivity;
        apply (tac_false_destruct _ j p P);
          [env_reflexivity
          |exact Hass]
       |find p Γ Q]
    end in
  lazymatch goal with
  | |- envs_entails (Envs ?Γp ?Γs _) ?Q =>
     first [find true Γp Q | find false Γs Q
           |fail "iAssumption:" Q "not found"]
  end.

(** * False *)
Tactic Notation "iExFalso" := apply tac_ex_falso.

(** * Making hypotheses persistent or pure *)
Local Tactic Notation "iPersistent" constr(H) :=
  eapply tac_persistent with _ H _ _ _; (* (i:=H) *)
    [env_reflexivity || fail "iPersistent:" H "not found"
    |apply _ ||
     let P := match goal with |- IntoPersistent _ ?P _ => P end in
     fail "iPersistent:" P "not persistent"
    |env_cbv; apply _ ||
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iPersistent:" P "not affine and the goal not absorbing"
    |env_reflexivity|].

Local Tactic Notation "iPure" constr(H) "as" simple_intropattern(pat) :=
  eapply tac_pure with _ H _ _ _; (* (i:=H1) *)
    [env_reflexivity || fail "iPure:" H "not found"
    |apply _ ||
     let P := match goal with |- IntoPure ?P _ => P end in
     fail "iPure:" P "not pure"
    |env_cbv; apply _ ||
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iPure:" P "not affine and the goal not absorbing"
    |intros pat].

Tactic Notation "iEmpIntro" :=
  iStartProof;
  eapply tac_emp_intro;
    [env_cbv; apply _ ||
     fail "iEmpIntro: spatial context contains non-affine hypotheses"].

Tactic Notation "iPureIntro" :=
  iStartProof;
  eapply tac_pure_intro;
    [env_reflexivity
    |apply _ ||
     let P := match goal with |- FromPure _ ?P _ => P end in
     fail "iPureIntro:" P "not pure"
    |].

(** Framing *)
Local Ltac iFrameFinish :=
  lazy iota beta;
  try match goal with
  | |- envs_entails _ True => by iPureIntro
  | |- envs_entails _ emp => iEmpIntro
  end.

Local Ltac iFramePure t :=
  iStartProof;
  let φ := type of t in
  eapply (tac_frame_pure _ _ _ _ t);
    [apply _ || fail "iFrame: cannot frame" φ
    |iFrameFinish].

Local Ltac iFrameHyp H :=
  iStartProof;
  eapply tac_frame with _ H _ _ _;
    [env_reflexivity || fail "iFrame:" H "not found"
    |apply _ ||
     let R := match goal with |- Frame _ ?R _ _ => R end in
     fail "iFrame: cannot frame" R
    |iFrameFinish].

Local Ltac iFrameAnyPure :=
  repeat match goal with H : _ |- _ => iFramePure H end.

Local Ltac iFrameAnyPersistent :=
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => repeat iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_intuitionistic Δ)) in go Hs
  end.

Local Ltac iFrameAnySpatial :=
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => try iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_spatial Δ)) in go Hs
  end.

Tactic Notation "iFrame" := iFrameAnySpatial.

Tactic Notation "iFrame" "(" constr(t1) ")" :=
  iFramePure t1.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" :=
  iFramePure t1; iFrame ( t2 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" :=
  iFramePure t1; iFrame ( t2 t3 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ).

Tactic Notation "iFrame" constr(Hs) :=
  let rec go Hs :=
    lazymatch Hs with
    | [] => idtac
    | SelPure :: ?Hs => iFrameAnyPure; go Hs
    | SelPersistent :: ?Hs => iFrameAnyPersistent; go Hs
    | SelSpatial :: ?Hs => iFrameAnySpatial; go Hs
    | SelIdent ?H :: ?Hs => iFrameHyp H; go Hs
    end
  in let Hs := sel_pat.parse Hs in go Hs.
Tactic Notation "iFrame" "(" constr(t1) ")" constr(Hs) :=
  iFramePure t1; iFrame Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")"
    constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ) Hs.

(** * Basic introduction tactics *)
Local Tactic Notation "iIntro" "(" simple_intropattern(x) ")" :=
  (* In the case the goal starts with an [let x := _ in _], we do not
     want to unfold x and start the proof mode. Instead, we want to
     use intros. So [iStartProof] has to be called only if [intros]
     fails *)
  intros x ||
    (iStartProof;
     lazymatch goal with
     | |- envs_entails _ _ =>
       eapply tac_forall_intro;
       [apply _ ||
              let P := match goal with |- FromForall ?P _ => P end in
              fail "iIntro: cannot turn" P "into a universal quantifier"
       |lazy beta; intros x]
     end).

Local Tactic Notation "iIntro" constr(H) :=
  iStartProof;
  first
  [ (* (?Q → _) *)
    eapply tac_impl_intro with _ H _ _ _; (* (i:=H) *)
      [apply _
      |env_cbv; apply _ ||
       let P := lazymatch goal with |- Persistent ?P => P end in
       fail 1 "iIntro: introducing non-persistent" H ":" P
              "into non-empty spatial context"
      |env_reflexivity || fail 1 "iIntro:" H "not fresh"
      |apply _
      |]
  | (* (_ -∗ _) *)
    eapply tac_wand_intro with _ H _ _; (* (i:=H) *)
      [apply _
      | env_reflexivity || fail 1 "iIntro:" H "not fresh"
      |]
  | fail "iIntro: nothing to introduce" ].

Local Tactic Notation "iIntro" "#" constr(H) :=
  iStartProof;
  first
  [ (* (?P → _) *)
    eapply tac_impl_intro_persistent with _ H _ _ _; (* (i:=H) *)
      [apply _
      |apply _ ||
       let P := match goal with |- IntoPersistent _ ?P _ => P end in
       fail 1 "iIntro:" P "not persistent"
      |env_reflexivity || fail 1 "iIntro:" H "not fresh"
      |]
  | (* (?P -∗ _) *)
    eapply tac_wand_intro_persistent with _ H _ _ _; (* (i:=H) *)
      [ apply _
      | apply _ ||
       let P := match goal with |- IntoPersistent _ ?P _ => P end in
       fail 1 "iIntro:" P "not persistent"
      |apply _ ||
       let P := match goal with |- TCOr (Affine ?P) _ => P end in
       fail 1 "iIntro:" P "not affine and the goal not absorbing"
      |env_reflexivity || fail 1 "iIntro:" H "not fresh"
      |]
  | fail "iIntro: nothing to introduce" ].

Local Tactic Notation "iIntro" "_" :=
  first
  [ (* (?Q → _) *)
    iStartProof; eapply tac_impl_intro_drop;
    [ apply _ | ]
  | (* (_ -∗ _) *)
    iStartProof; eapply tac_wand_intro_drop;
      [ apply _
      | apply _ ||
       let P := match goal with |- TCOr (Affine ?P) _ => P end in
       fail 1 "iIntro:" P "not affine and the goal not absorbing"
      |]
  | (* (∀ _, _) *) iIntro (_)
  | fail 1 "iIntro: nothing to introduce" ].

Local Tactic Notation "iIntroForall" :=
  lazymatch goal with
  | |-  _, ?P => fail (* actually an →, this is handled by iIntro below *)
  | |-  _, _ => intro
  | |- let _ := _ in _ => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ ( x : _, _) => let x' := fresh x in iIntro (x')
    end
  end.
Local Tactic Notation "iIntro" :=
  lazymatch goal with
  | |- _  ?P => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ (_ - _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    | |- envs_entails _ (_  _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    end
  end.

(** * Specialize *)
Record iTrm {X As S} :=
  ITrm { itrm : X ; itrm_vars : hlist As ; itrm_hyps : S }.
Arguments ITrm {_ _ _} _ _ _.

Notation "( H $! x1 .. xn )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) "") (at level 0, x1, xn at level 9).
Notation "( H $! x1 .. xn 'with' pat )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) pat) (at level 0, x1, xn at level 9).
Notation "( H 'with' pat )" := (ITrm H hnil pat) (at level 0).

(** There is some hacky stuff going on here: because of Coq bug #6583, unresolved
type classes in the arguments `xs` are resolved at arbitrary moments. Tactics
like `apply`, `split` and `eexists` wrongly trigger type class search to resolve
these holes. To avoid TC being triggered too eagerly, this tactic uses `refine`
at most places instead of `apply`. *)
Local Tactic Notation "iSpecializeArgs" constr(H) open_constr(xs) :=
  let rec go xs :=
    lazymatch xs with
    | hnil => idtac
    | hcons ?x ?xs =>
       notypeclasses refine (tac_forall_specialize _ _ H _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H "not found"
         |iSolveTC ||
          let P := match goal with |- IntoForall ?P _ => P end in
          fail "iSpecialize: cannot instantiate" P "with" x
         |lazymatch goal with (* Force [A] in [ex_intro] to deal with coercions. *)
          | |-  _ : ?A, _ =>
            notypeclasses refine (@ex_intro A _ x (conj _ _))
          end; [shelve..|env_reflexivity|go xs]]
    end in
  go xs.

Local Tactic Notation "iSpecializePat" open_constr(H) constr(pat) :=
  let solve_to_wand H1 :=
    iSolveTC ||
    let P := match goal with |- IntoWand _ _ ?P _ _ => P end in
    fail "iSpecialize:" P "not an implication/wand" in
  let solve_done d :=
    lazymatch d with
    | true =>
       done ||
       let Q := match goal with |- envs_entails _ ?Q => Q end in
       fail "iSpecialize: cannot solve" Q "using done"
    | false => idtac
    end in
  let rec go H1 pats :=
    lazymatch pats with
    | [] => idtac
    | SForall :: ?pats =>
       idtac "[IPM] The * specialization pattern is deprecated because it is applied implicitly.";
       go H1 pats
    | SIdent ?H2 :: ?pats =>
       notypeclasses refine (tac_specialize _ _ _ H2 _ H1 _ _ _ _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H2 "not found"
         |env_reflexivity || fail "iSpecialize:" H1 "not found"
         |iSolveTC ||
          let P := match goal with |- IntoWand _ _ ?P ?Q _ => P end in
          let Q := match goal with |- IntoWand _ _ ?P ?Q _ => Q end in
          fail "iSpecialize: cannot instantiate" P "with" Q
         |env_reflexivity|go H1 pats]
    | SPureGoal ?d :: ?pats =>
       notypeclasses refine (tac_specialize_assert_pure _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H1 "not found"
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- FromPure _ ?Q _ => Q end in
          fail "iSpecialize:" Q "not pure"
         |env_reflexivity
         |solve_done d (*goal*)
         |go H1 pats]
    | SGoal (SpecGoal GPersistent false ?Hs_frame [] ?d) :: ?pats =>
       notypeclasses refine (tac_specialize_assert_persistent _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H1 "not found"
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
         |iSolveTC
         |env_reflexivity
         |iFrame Hs_frame; solve_done d (*goal*)
         |go H1 pats]
    | SGoal (SpecGoal GPersistent _ _ _ _) :: ?pats =>
       fail "iSpecialize: cannot select hypotheses for persistent premise"
    | SGoal (SpecGoal ?m ?lr ?Hs_frame ?Hs ?d) :: ?pats =>
       let Hs' := eval cbv in (if lr then Hs else Hs_frame ++ Hs) in
       notypeclasses refine (tac_specialize_assert _ _ _ _ H1 _ lr Hs' _ _ _ _ _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H1 "not found"
         |solve_to_wand H1
         |lazymatch m with
          | GSpatial => notypeclasses refine (add_modal_id _ _)
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
         |env_reflexivity ||
          let Hs' := iMissingHyps Hs' in
          fail "iSpecialize: hypotheses" Hs' "not found"
         |iFrame Hs_frame; solve_done d (*goal*)
         |go H1 pats]
    | SAutoFrame GPersistent :: ?pats =>
       notypeclasses refine (tac_specialize_assert_persistent _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H1 "not found"
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
         |env_reflexivity
         |solve [iFrame "∗ #"]
         |go H1 pats]
    | SAutoFrame ?m :: ?pats =>
       notypeclasses refine (tac_specialize_frame _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H1 "not found"
         |solve_to_wand H1
         |lazymatch m with
          | GSpatial => notypeclasses refine (add_modal_id _ _)
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
         |first
            [notypeclasses refine (tac_unlock_emp _ _ _)
            |notypeclasses refine (tac_unlock_True _ _ _)
            |iFrame "∗ #"; notypeclasses refine (tac_unlock _ _ _)
            |fail "iSpecialize: premise cannot be solved by framing"]
         |exact eq_refl]; iIntro H1; go H1 pats
    end in let pats := spec_pat.parse pat in go H pats.

(* The argument [p] denotes whether the conclusion of the specialized term is
persistent. If so, one can use all spatial hypotheses for both proving the
premises and the remaning goal. The argument [p] can either be a Boolean or an
introduction pattern, which will be coerced into [true] when it solely contains
`#` or `%` patterns at the top-level.

In case the specialization pattern in [t] states that the modality of the goal
should be kept for one of the premises (i.e. [>[H1 .. Hn]] is used) then [p]
defaults to [false] (i.e. spatial hypotheses are not preserved). *)
Tactic Notation "iSpecializeCore" open_constr(H)
    "with" open_constr(xs) open_constr(pat) "as" constr(p) :=
  let p := intro_pat_persistent p in
  let pat := spec_pat.parse pat in
  let H :=
    lazymatch type of H with
    | string => constr:(INamed H)
    | _ => H
    end in
  iSpecializeArgs H xs; [..|
  lazymatch type of H with
  | ident =>
    (* The lemma [tac_specialize_persistent_helper] allows one to use all
    spatial hypotheses for both proving the premises of the lemma we
    specialize as well as those of the remaining goal. We can only use it when
    the result of the specialization is persistent, and no modality is
    eliminated. As an optimization, we do not use this when only universal
    quantifiers are instantiated. *)
    let pat := spec_pat.parse pat in
    lazymatch eval compute in
      (p && bool_decide (pat  []) && negb (existsb spec_pat_modal pat)) with
    | true =>
       (* FIXME: do something reasonable when the BI is not affine *)
       notypeclasses refine (tac_specialize_persistent_helper _ _ H _ _ _ _ _ _ _ _ _ _ _);
         [env_reflexivity || fail "iSpecialize:" H "not found"
         |iSpecializePat H pat;
           [..
           |refine (tac_specialize_persistent_helper_done _ H _ _ _);
            env_reflexivity]
         |iSolveTC ||
          let Q := match goal with |- IntoPersistent _ ?Q _ => Q end in
          fail "iSpecialize:" Q "not persistent"
         |env_cbv; iSolveTC ||
          let Q := match goal with |- TCAnd _ (Affine ?Q) => Q end in
          fail "iSpecialize:" Q "not affine"
         |env_reflexivity
         |(* goal *)]
    | false => iSpecializePat H pat
    end
  | _ => fail "iSpecialize:" H "should be a hypothesis, use iPoseProof instead"
  end].

Tactic Notation "iSpecializeCore" open_constr(t) "as" constr(p) :=
  lazymatch type of t with
  | string => iSpecializeCore t with hnil "" as p
  | ident => iSpecializeCore t with hnil "" as p
  | _ =>
    lazymatch t with
    | ITrm ?H ?xs ?pat => iSpecializeCore H with xs pat as p
    | _ => fail "iSpecialize:" t "should be a proof mode term"
    end
  end.

Tactic Notation "iSpecialize" open_constr(t) :=
  iSpecializeCore t as false.
Tactic Notation "iSpecialize" open_constr(t) "as" "#" :=
  iSpecializeCore t as true.

(** * Pose proof *)
(* The tactic [iIntoEmpValid] tactic solves a goal [bi_emp_valid Q]. The
argument [t] must be a Coq term whose type is of the following shape:

[∀ (x_1 : A_1) .. (x_n : A_n), φ]

and so that we have an instance `AsValid φ Q`.

Examples of such [φ]s are

- [bi_emp_valid P], in which case [Q] should be [P]
- [P1 ⊢ P2], in which case [Q] should be [P1 -∗ P2]
- [P1 ⊣⊢ P2], in which case [Q] should be [P1 ↔ P2]

The tactic instantiates each dependent argument [x_i] with an evar and generates
a goal [R] for each non-dependent argument [x_i : R].  For example, if the
original goal was [Q] and [t] has type [∀ x, P x → Q], then it generates an evar
[?x] for [x] and a subgoal [P ?x]. *)
Tactic Notation "iIntoEmpValid" open_constr(t) :=
  let rec go t :=
    (* We try two reduction tactics for the type of t before trying to
       specialize it. We first try the head normal form in order to
       unfold all the definition that could hide an entailment.  Then,
       we try the much weaker [eval cbv zeta], because entailment is
       not necessarilly opaque, and could be unfolded by [hnf].

       However, for calling type class search, we only use [cbv zeta]
       in order to make sure we do not unfold [bi_emp_valid]. *)
    let tT := type of t in
    first
      [ let tT' := eval hnf in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in
        notypeclasses refine (as_emp_valid_1 tT _ _);
          [iSolveTC || fail "iPoseProof: not a BI assertion"
          |exact t]]
  with go_specialize t tT :=
    lazymatch tT with                (* We do not use hnf of tT, because, if
                                        entailment is not opaque, then it would
                                        unfold it. *)
    | ?P  ?Q => let H := fresh in assert P as H; [|go uconstr:(t H); clear H]
    |  _ : ?T, _ =>
      (* Put [T] inside an [id] to avoid TC inference from being invoked. *)
      (* This is a workarround for Coq bug #6583. *)
      let e := fresh in evar (e:id T);
      let e' := eval unfold e in e in clear e; go (t e')
    end
  in
  go t.

(* The tactic [tac] is called with a temporary fresh name [H]. The argument
[lazy_tc] denotes whether type class inference on the premises of [lem] should
be performed before (if false) or after (if true) [tac H] is called.

The tactic [iApply] uses laxy type class inference, so that evars can first be
instantiated by matching with the goal, whereas [iDestruct] does not, because
eliminations may not be performed when type classes have not been resolved.
*)
Tactic Notation "iPoseProofCore" open_constr(lem)
    "as" constr(p) constr(lazy_tc) tactic(tac) :=
  iStartProof;
  let Htmp := iFresh in
  let t := lazymatch lem with ITrm ?t ?xs ?pat => t | _ => lem end in
  let t := lazymatch type of t with string => constr:(INamed t) | _ => t end in
  let spec_tac _ :=
    lazymatch lem with
    | ITrm ?t ?xs ?pat => iSpecializeCore (ITrm Htmp xs pat) as p
    | _ => idtac
    end in
  let go goal_tac :=
    lazymatch type of t with
    | ident =>
       eapply tac_pose_proof_hyp with _ _ t _ Htmp _;
         [env_reflexivity || fail "iPoseProof:" t "not found"
         |env_reflexivity || fail "iPoseProof:" Htmp "not fresh"
         |goal_tac ()]
    | _ =>
       eapply tac_pose_proof with _ Htmp _; (* (j:=H) *)
         [iIntoEmpValid t
         |env_reflexivity || fail "iPoseProof:" Htmp "not fresh"
         |goal_tac ()]
    end;
    try iSolveTC in
  lazymatch eval compute in lazy_tc with
  | true => go ltac:(fun _ => spec_tac (); last (tac Htmp))
  | false => go spec_tac; last (tac Htmp)
  end.

(** * Apply *)
Tactic Notation "iApplyHyp" constr(H) :=
  let rec go H := first
    [eapply tac_apply with _ H _ _ _;
      [env_reflexivity
      |iSolveTC
      |lazy beta (* reduce betas created by instantiation *)]
    |iSpecializePat H "[]"; last go H] in
  iExact H ||
  go H ||
  lazymatch iTypeOf H with
  | Some (_,?Q) => fail "iApply: cannot apply" Q
  end.

Tactic Notation "iApply" open_constr(lem) :=
  iPoseProofCore lem as false true (fun H => iApplyHyp H).

(** * Revert *)
Local Tactic Notation "iForallRevert" ident(x) :=
  let err x :=
    intros x;
    iMatchHyp (fun H P =>
      lazymatch P with
      | context [x] => fail 2 "iRevert:" x "is used in hypothesis" H
      end) in
  iStartProof;
  let A := type of x in
  lazymatch type of A with
  | Prop => revert x; first [apply tac_pure_revert|err x]
  | _ => revert x; first [apply tac_forall_revert|err x]
  end.

Tactic Notation "iRevert" constr(Hs) :=
  let rec go Hs :=
    lazymatch Hs with
    | [] => idtac
    | ESelPure :: ?Hs =>
       repeat match goal with x : _ |- _ => revert x end;
       go Hs
    | ESelIdent _ ?H :: ?Hs =>
       eapply tac_revert with _ H _ _; (* (i:=H2) *)
         [env_reflexivity || fail "iRevert:" H "not found"
         |env_cbv; go Hs]
    end in
  let Hs := iElaborateSelPat Hs in iStartProof; go Hs.

Tactic Notation "iRevert" "(" ident(x1) ")" :=
  iForallRevert x1.
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" :=
  iForallRevert x2; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" :=
  iForallRevert x3; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")" :=
  iForallRevert x4; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" :=
  iForallRevert x5; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" :=
  iForallRevert x6; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" :=
  iForallRevert x7; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" :=
  iForallRevert x8; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).

Tactic Notation "iRevert" "(" ident(x1) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")"
    constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 ).

(** * Disjunction *)
Tactic Notation "iLeft" :=
  iStartProof;
  eapply tac_or_l;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iLeft:" P "not a disjunction"
    |].
Tactic Notation "iRight" :=
  iStartProof;
  eapply tac_or_r;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iRight:" P "not a disjunction"
    |].

Local Tactic Notation "iOrDestruct" constr(H) "as" constr(H1) constr(H2) :=
  eapply tac_or_destruct with _ _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
    [env_reflexivity || fail "iOrDestruct:" H "not found"
    |iSolveTC ||
     let P := match goal with |- IntoOr ?P _ _ => P end in
     fail "iOrDestruct: cannot destruct" P
    |env_reflexivity || fail "iOrDestruct:" H1 "not fresh"
    |env_reflexivity || fail "iOrDestruct:" H2 "not fresh"
    | |].

(** * Conjunction and separating conjunction *)
Tactic Notation "iSplit" :=
  iStartProof;
  eapply tac_and_split;
    [iSolveTC ||
     let P := match goal with |- FromAnd ?P _ _ => P end in
     fail "iSplit:" P "not a conjunction"| |].

Tactic Notation "iSplitL" constr(Hs) :=
  iStartProof;
  let Hs := words Hs in
  let Hs := eval vm_compute in (INamed <$> Hs) in
  eapply tac_sep_split with _ _ Left Hs _ _; (* (js:=Hs) *)
    [iSolveTC ||
     let P := match goal with |- FromSep _ ?P _ _ => P end in
     fail "iSplitL:" P "not a separating conjunction"
    |env_reflexivity ||
     let Hs := iMissingHyps Hs in
     fail "iSplitL: hypotheses" Hs "not found"
    | |].

Tactic Notation "iSplitR" constr(Hs) :=
  iStartProof;
  let Hs := words Hs in
  let Hs := eval vm_compute in (INamed <$> Hs) in
  eapply tac_sep_split with _ _ Right Hs _ _; (* (js:=Hs) *)
    [iSolveTC ||
     let P := match goal with |- FromSep _ ?P _ _ => P end in
     fail "iSplitR:" P "not a separating conjunction"
    |env_reflexivity ||
     let Hs := iMissingHyps Hs in
     fail "iSplitR: hypotheses" Hs "not found"
    | |].

Tactic Notation "iSplitL" := iSplitR "".
Tactic Notation "iSplitR" := iSplitL "".

Local Tactic Notation "iAndDestruct" constr(H) "as" constr(H1) constr(H2) :=
  eapply tac_and_destruct with _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
    [env_reflexivity || fail "iAndDestruct:" H "not found"
    |env_cbv; iSolveTC ||
     let P :=
       lazymatch goal with
       | |- IntoSep ?P _ _ => P
       | |- IntoAnd _ ?P _ _ => P
       end in
     fail "iAndDestruct: cannot destruct" P
    |env_reflexivity || fail "iAndDestruct:" H1 "or" H2 " not fresh"|].

Local Tactic Notation "iAndDestructChoice" constr(H) "as" constr(d) constr(H') :=
  eapply tac_and_destruct_choice with _ H _ d H' _ _ _;
    [env_reflexivity || fail "iAndDestructChoice:" H "not found"
    |env_cbv; iSolveTC ||
     let P := match goal with |- TCOr (IntoAnd _ ?P _ _) _ => P end in
     fail "iAndDestructChoice: cannot destruct" P
    |env_reflexivity || fail "iAndDestructChoice:" H' " not fresh"|].

(** * Combinining hypotheses *)
Tactic Notation "iCombine" constr(Hs) "as" constr(H) :=
  let Hs := words Hs in
  let Hs := eval vm_compute in (INamed <$> Hs) in
  eapply tac_combine with _ _ Hs _ _ H _;
    [env_reflexivity ||
     let Hs := iMissingHyps Hs in
     fail "iCombine: hypotheses" Hs "not found"
    |iSolveTC
    |env_reflexivity || fail "iCombine:" H "not fresh"|].

Tactic Notation "iCombine" constr(H1) constr(H2) "as" constr(H) :=
  iCombine [H1;H2] as H.

(** * Existential *)
Tactic Notation "iExists" uconstr(x1) :=
  iStartProof;
  eapply tac_exist;
    [iSolveTC ||
     let P := match goal with |- FromExist ?P _ => P end in
     fail "iExists:" P "not an existential"
    |cbv beta; eexists x1].

Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) :=
  iExists x1; iExists x2.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) :=
  iExists x1; iExists x2, x3.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) :=
  iExists x1; iExists x2, x3, x4.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) :=
  iExists x1; iExists x2, x3, x4, x5.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) :=
  iExists x1; iExists x2, x3, x4, x5, x6.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) "," uconstr(x7) :=
  iExists x1; iExists x2, x3, x4, x5, x6, x7.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) "," uconstr(x7) ","
    uconstr(x8) :=
  iExists x1; iExists x2, x3, x4, x5, x6, x7, x8.

Local Tactic Notation "iExistDestruct" constr(H)
    "as" simple_intropattern(x) constr(Hx) :=
  eapply tac_exist_destruct with H _ Hx _ _; (* (i:=H) (j:=Hx) *)
    [env_reflexivity || fail "iExistDestruct:" H "not found"
    |iSolveTC ||
     let P := match goal with |- IntoExist ?P _ => P end in
     fail "iExistDestruct: cannot destruct" P|];
  let y := fresh in
  intros y; eexists; split;
    [env_reflexivity || fail "iExistDestruct:" Hx "not fresh"
    |revert y; intros x].

(** * Modality introduction *)
Tactic Notation "iModIntro" uconstr(sel) :=
  iStartProof;
  notypeclasses refine (tac_modal_intro _ sel _ _ _ _ _ _ _ _ _ _ _ _ _);
    [iSolveTC ||
     fail "iModIntro: the goal is not a modality"
    |iSolveTC ||
     let s := lazymatch goal with |- IntoModalPersistentEnv _ _ _ ?s => s end in
     lazymatch eval hnf in s with
     | MIEnvForall ?C => fail "iModIntro: persistent context does not satisfy" C
     | MIEnvIsEmpty => fail "iModIntro: persistent context is non-empty"
     end
    |iSolveTC ||
     let s := lazymatch goal with |- IntoModalPersistentEnv _ _ _ ?s => s end in
     lazymatch eval hnf in s with
     | MIEnvForall ?C => fail "iModIntro: spatial context does not satisfy" C
     | MIEnvIsEmpty => fail "iModIntro: spatial context is non-empty"
     end
    |env_cbv; iSolveTC ||
     fail "iModIntro: cannot filter spatial context when goal is not absorbing"
    |].
Tactic Notation "iModIntro" := iModIntro _.
Tactic Notation "iAlways" := iModIntro.

(** * Later *)
Tactic Notation "iNext" open_constr(n) := iModIntro (^n _)%I.
Tactic Notation "iNext" := iModIntro (^_ _)%I.

(** * Update modality *)
Tactic Notation "iModCore" constr(H) :=
  eapply tac_modal_elim with _ H _ _ _ _ _ _;
    [env_reflexivity || fail "iMod:" H "not found"
    |iSolveTC ||
     let P := match goal with |- ElimModal _ _ _ ?P _ _ _ => P end in
     let Q := match goal with |- ElimModal _ _ _ _ _ ?Q _ => Q end in
     fail "iMod: cannot eliminate modality " P "in" Q
    |try fast_done (* optional side-condition *)
    |env_reflexivity|].

(** * Basic destruct tactic *)
Tactic Notation "iDestructHyp" constr(H) "as" constr(pat) :=
  let rec go Hz pat :=
    lazymatch pat with
    | IAnom =>
       lazymatch Hz with
       | IAnon _ => idtac
       | INamed ?Hz => let Hz' := iFresh in iRename Hz into Hz'
       end
    | IDrop => iClearHyp Hz
    | IFrame => iFrameHyp Hz
    | IIdent ?y => iRename Hz into y
    | IList [[]] => iExFalso; iExact Hz
    | IList [[?pat1; IDrop]] => iAndDestructChoice Hz as Left Hz; go Hz pat1
    | IList [[IDrop; ?pat2]] => iAndDestructChoice Hz as Right Hz; go Hz pat2
    | IList [[?pat1; ?pat2]] =>
       let Hy := iFresh in iAndDestruct Hz as Hz Hy; go Hz pat1; go Hy pat2
    | IList [[?pat1];[?pat2]] => iOrDestruct Hz as Hz Hz; [go Hz pat1|go Hz pat2]
    | IPureElim => iPure Hz as ?
    | IRewrite Right => iPure Hz as ->
    | IRewrite Left => iPure Hz as <-
    | IAlwaysElim ?pat => iPersistent Hz; go Hz pat
    | IModalElim ?pat => iModCore Hz; go Hz pat
    | _ => fail "iDestruct:" pat "invalid"
    end in
  let rec find_pat found pats :=
    lazymatch pats with
    | [] =>
      lazymatch found with
      | true => idtac
      | false => fail "iDestruct:" pat "should contain exactly one proper introduction pattern"
      end
    | ISimpl :: ?pats => simpl; find_pat found pats
    | IClear ?H :: ?pats => iClear H; find_pat found pats
    | IClearFrame ?H :: ?pats => iFrame H; find_pat found pats
    | ?pat :: ?pats =>
       lazymatch found with
       | false => go H pat; find_pat true pats
       | true => fail "iDestruct:" pat "should contain exactly one proper introduction pattern"
       end
    end in
  let pats := intro_pat.parse pat in
  find_pat false pats.

Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1) ")"
    constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as @ pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) ")" constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 ) pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) ")" constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 ) pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) ")"
    constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 ) pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) ")" constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 x5 ) pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) ")" constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 x5 x6 ) pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) ")"
    constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 x5 x6 x7 ) pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) ")" constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 x5 x6 x7 x8 ) pat.

(** * Introduction tactic *)
Tactic Notation "iIntros" constr(pat) :=
  let rec go pats startproof :=
    lazymatch pats with
    | [] =>
      lazymatch startproof with
      | true => iStartProof
      | false => idtac
      end
    (* Optimizations to avoid generating fresh names *)
    | IPureElim :: ?pats => iIntro (?); go pats startproof
    | IAlwaysElim (IIdent ?H) :: ?pats => iIntro #H; go pats false
    | IDrop :: ?pats => iIntro _; go pats startproof
    | IIdent ?H :: ?pats => iIntro H; go pats startproof
    (* Introduction patterns that can only occur at the top-level *)
    | IPureIntro :: ?pats => iPureIntro; go pats false
    | IAlwaysIntro :: ?pats => iAlways; go pats false
    | IModalIntro :: ?pats => iModIntro; go pats false
    | IForall :: ?pats => repeat iIntroForall; go pats startproof
    | IAll :: ?pats => repeat (iIntroForall || iIntro); go pats startproof
    (* Clearing and simplifying introduction patterns *)
    | ISimpl :: ?pats => simpl; go pats startproof
    | IClear ?H :: ?pats => iClear H; go pats false
    | IClearFrame ?H :: ?pats => iFrame H; go pats false
    | IDone :: ?pats => try done; go pats startproof
    (* Introduction + destruct *)
    | IAlwaysElim ?pat :: ?pats =>
       let H := iFresh in iIntro #H; iDestructHyp H as pat; go pats false
    | ?pat :: ?pats =>
       let H := iFresh in iIntro H; iDestructHyp H as pat; go pats false
    end
  in let pats := intro_pat.parse pat in go pats true.
Tactic Notation "iIntros" := iIntros [IAll].

Tactic Notation "iIntros" "(" simple_intropattern(x1) ")" :=
  iIntro ( x1 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1)
    simple_intropattern(x2) ")" :=
  iIntros ( x1 ); iIntro ( x2 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) ")" :=
  iIntros ( x1 x2 ); iIntro ( x3 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) ")" :=
  iIntros ( x1 x2 x3 ); iIntro ( x4 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5) ")" :=
  iIntros ( x1 x2 x3 x4 ); iIntro ( x5 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    simple_intropattern(x6) ")" :=
  iIntros ( x1 x2 x3 x4 x5 ); iIntro ( x6 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    simple_intropattern(x6) simple_intropattern(x7) ")" :=
  iIntros ( x1 x2 x3 x4 x5 x6 ); iIntro ( x7 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8) ")" :=
  iIntros ( x1 x2 x3 x4 x5 x6 x7 ); iIntro ( x8 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8)
    simple_intropattern(x9) ")" :=
  iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 ); iIntro ( x9 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8)
    simple_intropattern(x9) simple_intropattern(x10) ")" :=
  iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 ); iIntro ( x10 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8)
    simple_intropattern(x9) simple_intropattern(x10) simple_intropattern(x11) ")" :=
  iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ); iIntro ( x11 ).
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8)
    simple_intropattern(x9) simple_intropattern(x10) simple_intropattern(x11)
    simple_intropattern(x12) ")" :=
  iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ); iIntro ( x12 ).

Tactic Notation "iIntros" "(" simple_intropattern(x1) ")" constr(p) :=
  iIntros ( x1 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    ")" constr(p) :=
  iIntros ( x1 x2 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) ")" constr(p) :=
  iIntros ( x1 x2 x3 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) ")" constr(p) :=
  iIntros ( x1 x2 x3 x4 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    ")" constr(p) :=
  iIntros ( x1 x2 x3 x4 x5 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    simple_intropattern(x6) ")" constr(p) :=
  iIntros ( x1 x2 x3 x4 x5 x6 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    simple_intropattern(x6) simple_intropattern(x7) ")" constr(p) :=
  iIntros ( x1 x2 x3 x4 x5 x6 x7 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8)
    ")" constr(p) :=
  iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8)
    simple_intropattern(x9) ")" constr(p) :=
  iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8)
    simple_intropattern(x9) simple_intropattern(x10) ")" constr(p) :=
  iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8)
    simple_intropattern(x9) simple_intropattern(x10) simple_intropattern(x11)
    ")" constr(p) :=
  iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ); iIntros p.
Tactic Notation "iIntros" "(" simple_intropattern(x1) simple_intropattern(x2)
    simple_intropattern(x3) simple_intropattern(x4) simple_intropattern(x5)
    simple_intropattern(x6) simple_intropattern(x7) simple_intropattern(x8)
    simple_intropattern(x9) simple_intropattern(x10) simple_intropattern(x11)
    simple_intropattern(x12) ")" constr(p) :=
  iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 ); iIntros p.

Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1) ")" :=
  iIntros p; iIntros ( x1 ).
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) ")" :=
  iIntros p; iIntros ( x1 x2 ).
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) ")" :=
  iIntros p; iIntros ( x1 x2 x3 ).
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) ")" :=
  iIntros p; iIntros ( x1 x2 x3 x4 ).
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) ")" :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 ).
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) ")" :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) ")" :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 x6 x7 ).
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) ")" :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 ).
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) simple_intropattern(x9) ")" :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 ).
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) simple_intropattern(x9) simple_intropattern(x10) ")" :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ).
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) simple_intropattern(x9) simple_intropattern(x10)
    simple_intropattern(x11) ")" :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ).
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) simple_intropattern(x9) simple_intropattern(x10)
    simple_intropattern(x11) simple_intropattern(x12) ")" :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 ).

Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1) ")" constr(p2) :=
  iIntros p; iIntros ( x1 ); iIntros p2.
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) ")" constr(p2) :=
  iIntros p; iIntros ( x1 x2 ); iIntros p2.
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) ")" constr(p2) :=
  iIntros p; iIntros ( x1 x2 x3 ); iIntros p2.
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    ")" constr(p2) :=
  iIntros p; iIntros ( x1 x2 x3 x4 ); iIntros p2.
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) ")" constr(p2) :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 ); iIntros p2.
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) ")" constr(p2) :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 x6 ); iIntros p2.
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    ")" constr(p2) :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 x6 x7 ); iIntros p2.
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) ")" constr(p2) :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 ); iIntros p2.
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) simple_intropattern(x9) ")" constr(p2) :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 ); iIntros p2.
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) simple_intropattern(x9) simple_intropattern(x10)
    ")" constr(p2) :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ); iIntros p2.
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) simple_intropattern(x9) simple_intropattern(x10)
    simple_intropattern(x11) ")" constr(p2) :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ); iIntros p2.
Tactic Notation "iIntros" constr(p) "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) simple_intropattern(x9) simple_intropattern(x10)
    simple_intropattern(x11) simple_intropattern(x12) ")" constr(p2) :=
  iIntros p; iIntros ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 ); iIntros p2.


(* Used for generalization in iInduction and iLöb *)
Tactic Notation "iRevertIntros" constr(Hs) "with" tactic(tac) :=
  let rec go Hs :=
    lazymatch Hs with
    | [] => tac
    | ESelPure :: ?Hs => fail "iRevertIntros: % not supported"
    | ESelIdent ?p ?H :: ?Hs =>
       iRevert H; go Hs;
       let H' :=
         match p with true => constr:([IAlwaysElim (IIdent H)]) | false => H end in
       iIntros H'
    end in
  try iStartProof; let Hs := iElaborateSelPat Hs in go Hs.

Tactic Notation "iRevertIntros" "(" ident(x1) ")" constr(Hs) "with" tactic(tac):=
  iRevertIntros Hs with (iRevert (x1); tac; iIntros (x1)).
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ")" constr(Hs)
    "with" tactic(tac):=
  iRevertIntros Hs with (iRevert (x1 x2); tac; iIntros (x1 x2)).
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ")" constr(Hs)
    "with" tactic(tac):=
  iRevertIntros Hs with (iRevert (x1 x2 x3); tac; iIntros (x1 x2 x3)).
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")"
    constr(Hs) "with" tactic(tac):=
  iRevertIntros Hs with (iRevert (x1 x2 x3 x4); tac; iIntros (x1 x2 x3 x4)).
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" constr(Hs) "with" tactic(tac):=
  iRevertIntros Hs with (iRevert (x1 x2 x3 x4 x5); tac; iIntros (x1 x2 x3 x4 x5)).
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" constr(Hs) "with" tactic(tac):=
  iRevertIntros Hs with (iRevert (x1 x2 x3 x4 x5 x6);
    tac; iIntros (x1 x2 x3 x4 x5 x6)).
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" constr(Hs) "with" tactic(tac):=
  iRevertIntros Hs with (iRevert (x1 x2 x3 x4 x5 x6 x7);
    tac; iIntros (x1 x2 x3 x4 x5 x6 x7)).
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" constr(Hs) "with" tactic(tac):=
  iRevertIntros Hs with (iRevert (x1 x2 x3 x4 x5 x6 x7 x8);
    tac; iIntros (x1 x2 x3 x4 x5 x6 x7 x8)).

Tactic Notation "iRevertIntros" "with" tactic(tac) :=
  iRevertIntros "" with tac.
Tactic Notation "iRevertIntros" "(" ident(x1) ")" "with" tactic(tac):=
  iRevertIntros (x1) "" with tac.
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ")" "with" tactic(tac):=
  iRevertIntros (x1 x2) "" with tac.
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ")"
    "with" tactic(tac):=
  iRevertIntros (x1 x2 x3) "" with tac.
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")"
    "with" tactic(tac):=
  iRevertIntros (x1 x2 x3 x4) "" with tac.
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" "with" tactic(tac):=
  iRevertIntros (x1 x2 x3 x4 x5) "" with tac.
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" "with" tactic(tac):=
  iRevertIntros (x1 x2 x3 x4 x5 x6) "" with tac.
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" "with" tactic(tac):=
  iRevertIntros (x1 x2 x3 x4 x5 x6 x7) "" with tac.
Tactic Notation "iRevertIntros" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" "with" tactic(tac):=
  iRevertIntros (x1 x2 x3 x4 x5 x6 x7 x8) "" with tac.

(** * Destruct tactic *)
Class CopyDestruct {PROP : bi} (P : PROP).
Arguments CopyDestruct {_} _%I.
Hint Mode CopyDestruct + ! : typeclass_instances.

Instance copy_destruct_forall {PROP : bi} {A} (Φ : A  PROP) : CopyDestruct ( x, Φ x).
Instance copy_destruct_impl {PROP : bi} (P Q : PROP) :
  CopyDestruct Q  CopyDestruct (P  Q).
Instance copy_destruct_wand {PROP : bi} (P Q : PROP) :
  CopyDestruct Q  CopyDestruct (P - Q).
Instance copy_destruct_affinely {PROP : bi} (P : PROP) :
  CopyDestruct P  CopyDestruct (<affine> P).
Instance copy_destruct_persistently {PROP : bi} (P : PROP) :
  CopyDestruct P  CopyDestruct (<pers> P).

Tactic Notation "iDestructCore" open_constr(lem) "as" constr(p) tactic(tac) :=
  let ident :=
    lazymatch type of lem with
    | ident => constr:(Some lem)
    | string => constr:(Some (INamed lem))
    | iTrm =>
       lazymatch lem with
       | @iTrm ident ?H _ _ => constr:(Some H)
       | @iTrm string ?H _ _ => constr:(Some (INamed H))
       | _ => constr:(@None ident)
       end
    | _ => constr:(@None ident)
    end in
  let intro_destruct n :=
    let rec go n' :=
      lazymatch n' with
      | 0 => fail "iDestruct: cannot introduce" n "hypotheses"
      | 1 => repeat iIntroForall; let H := iFresh in iIntro H; tac H
      | S ?n' => repeat iIntroForall; let H := iFresh in iIntro H; go n'
      end in
    intros; go n in
  lazymatch type of lem with
  | nat => intro_destruct lem
  | Z => (* to make it work in Z_scope. We should just be able to bind
     tactic notation arguments to notation scopes. *)
     let n := eval compute in (Z.to_nat lem) in intro_destruct n
  | _ =>
     (* Only copy the hypothesis in case there is a [CopyDestruct] instance.
     Also, rule out cases in which it does not make sense to copy, namely when
     destructing a lemma (instead of a hypothesis) or a spatial hyopthesis
     (which cannot be kept). *)
     iStartProof;
     lazymatch ident with
     | None => iPoseProofCore lem as p false tac
     | Some ?H =>
        lazymatch iTypeOf H with
        | None => fail "iDestruct:" H "not found"
        | Some (true, ?P) =>
           (* persistent hypothesis, check for a CopyDestruct instance *)
           tryif (let dummy := constr:(_ : CopyDestruct P) in idtac)
           then (iPoseProofCore lem as p false tac)
           else (iSpecializeCore lem as p; last (tac H))
        | Some (false, ?P) =>
           (* spatial hypothesis, cannot copy *)
           iSpecializeCore lem as p; last (tac H)
        end
     end
  end.

Tactic Notation "iDestruct" open_constr(lem) "as" constr(pat) :=
  iDestructCore lem as pat (fun H => iDestructHyp H as pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1) ")"
    constr(pat) :=
  iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) ")" constr(pat) :=
  iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 x2 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) ")" constr(pat) :=
  iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 x2 x3 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) ")"
    constr(pat) :=
  iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 x2 x3 x4 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) ")" constr(pat) :=
  iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) ")" constr(pat) :=
  iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) ")"
    constr(pat) :=
  iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 x7 ) pat).
Tactic Notation "iDestruct" open_constr(lem) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) ")" constr(pat) :=
  iDestructCore lem as pat (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 x7 x8 ) pat).

Tactic Notation "iDestruct" open_constr(lem) "as" "%" simple_intropattern(pat) :=
  iDestructCore lem as true (fun H => iPure H as pat).

Tactic Notation "iPoseProof" open_constr(lem) "as" constr(pat) :=
  iPoseProofCore lem as pat false (fun H => iDestructHyp H as pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1) ")"
    constr(pat) :=
  iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 ) pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) ")" constr(pat) :=
  iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 x2 ) pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) ")" constr(pat) :=
  iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 x2 x3 ) pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) ")"
    constr(pat) :=
  iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 x2 x3 x4 ) pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) ")" constr(pat) :=
  iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 ) pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) ")" constr(pat) :=
  iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 ) pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) ")"
    constr(pat) :=
  iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 x7 ) pat).
Tactic Notation "iPoseProof" open_constr(lem) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) ")" constr(pat) :=
  iPoseProofCore lem as pat false (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 x7 x8 ) pat).

(** * Induction *)
(* An invocation of [iInduction (x) as pat IH forall (x1...xn) Hs] will
result in the following actions:

- Revert the proofmode hypotheses [Hs]
- Revert all remaining spatial hypotheses and the remaining persistent
  hypotheses containing the induction variable [x]
- Revert the pure hypotheses [x1..xn]

- Actuall perform induction

- Introduce thee pure hypotheses [x1..xn]
- Introduce the spatial hypotheses and persistent hypotheses involving [x]
- Introduce the proofmode hypotheses [Hs]
*)
Tactic Notation "iInductionCore" constr(x) "as" simple_intropattern(pat) constr(IH) :=
  let rec fix_ihs rev_tac :=
    lazymatch goal with
    | H : context [envs_entails _ _] |- _ =>
       eapply (tac_revert_ih _ _ _ H _);
         [env_reflexivity
          || fail "iInduction: spatial context not empty, this should not happen"
         |clear H];
       fix_ihs ltac:(fun j =>
         let IH' := eval vm_compute in
           match j with 0%N => IH | _ => IH +:+ pretty j end in
         iIntros [IAlwaysElim (IIdent IH')];
         let j := eval vm_compute in (1 + j)%N in
         rev_tac j)
    | _ => rev_tac 0%N
    end in
  induction x as pat; fix_ihs ltac:(fun _ => idtac).

Ltac iHypsContaining x :=
  let rec go Γ x Hs :=
    lazymatch Γ with
    | Enil => constr:(Hs)
    | Esnoc ?Γ ?H ?Q =>
       match Q with
       | context [x] => go Γ x (H :: Hs)
       | _ => go Γ x Hs
       end
     end in
  let Γp := lazymatch goal with |- envs_entails (Envs ?Γp _ _) _ => Γp end in
  let Γs := lazymatch goal with |- envs_entails (Envs _ ?Γs _) _ => Γs end in
  let Hs := go Γp x (@nil ident) in go Γs x Hs.

Tactic Notation "iInductionRevert" constr(x) constr(Hs) "with" tactic(tac) :=
  iRevertIntros Hs with (
    iRevertIntros "∗" with (
      idtac;
      let Hsx := iHypsContaining x in
      iRevertIntros Hsx with tac
    )
  ).

Tactic Notation "iInduction" constr(x) "as" simple_intropattern(pat) constr(IH) :=
  iInductionRevert x "" with (iInductionCore x as pat IH).
Tactic Notation "iInduction" constr(x) "as" simple_intropattern(pat) constr(IH)
    "forall" "(" ident(x1) ")" :=
  iInductionRevert x "" with (iRevertIntros(x1) "" with (iInductionCore x as pat IH)).
Tactic Notation "iInduction" constr(x) "as" simple_intropattern(pat) constr(IH)
    "forall" "(" ident(x1) ident(x2) ")" :=
  iInductionRevert x "" with (iRevertIntros(x1 x2) "" with (iInductionCore x as pat IH)).
Tactic Notation "iInduction" constr(x) "as" simple_intropattern(pat) constr(IH)
    "forall" "(" ident(x1) ident(x2) ident(x3) ")" :=
  iInductionRevert x "" with (iRevertIntros(x1 x2 x3) "" with (iInductionCore x as pat IH)).
Tactic Notation "iInduction" constr(x) "as" simple_intropattern(pat) constr(IH)
    "forall" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")" :=
  iInductionRevert x "" with (iRevertIntros(x1 x2 x3 x4) "" with (iInductionCore x as pat IH)).
Tactic Notation "iInduction" constr(x) "as" simple_intropattern(pat) constr(IH)
    "forall" "(" ident(x1) ident(x2) ident(x3) ident(x4) ident(x5) ")" :=
  iInductionRevert x "" with (iRevertIntros(x1 x2 x3 x4 x5) "" with (iInductionCore x as pat IH)).
Tactic Notation "iInduction" constr(x) "as" simple_intropattern(pat) constr(IH)
    "forall" "(" ident(x1) ident(x2) ident(x3) ident(x4) ident(x5) ident(