excl.v 5.88 KB
Newer Older
1
Require Export iris.cmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
3
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
4
5
6

Inductive excl (A : Type) :=
  | Excl : A  excl A
Robbert Krebbers's avatar
Robbert Krebbers committed
7
  | ExclUnit : excl A
Robbert Krebbers's avatar
Robbert Krebbers committed
8
9
10
11
  | ExclBot : excl A.
Arguments Excl {_} _.
Arguments ExclUnit {_}.
Arguments ExclBot {_}.
Robbert Krebbers's avatar
Robbert Krebbers committed
12
13
Instance maybe_Excl {A} : Maybe (@Excl A) := λ x,
  match x with Excl a => Some a | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
14

Robbert Krebbers's avatar
Robbert Krebbers committed
15
(* Cofe *)
Robbert Krebbers's avatar
Robbert Krebbers committed
16
17
Inductive excl_equiv `{Equiv A} : Equiv (excl A) :=
  | Excl_equiv (x y : A) : x  y  Excl x  Excl y
Robbert Krebbers's avatar
Robbert Krebbers committed
18
  | ExclUnit_equiv : ExclUnit  ExclUnit
Robbert Krebbers's avatar
Robbert Krebbers committed
19
20
  | ExclBot_equiv : ExclBot  ExclBot.
Existing Instance excl_equiv.
Robbert Krebbers's avatar
Robbert Krebbers committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
Inductive excl_dist `{Dist A} : Dist (excl A) :=
  | excl_dist_0 (x y : excl A) : x ={0}= y
  | Excl_dist (x y : A) n : x ={n}= y  Excl x ={n}= Excl y
  | ExclUnit_dist n : ExclUnit ={n}= ExclUnit
  | ExclBot_dist n : ExclBot ={n}= ExclBot.
Existing Instance excl_dist.
Program Definition excl_chain `{Cofe A}
    (c : chain (excl A)) (x : A) (H : maybe Excl (c 1) = Some x) : chain A :=
  {| chain_car n := match c n return _ with Excl y => y | _ => x end |}.
Next Obligation.
  intros A ???? c x ? n i ?; simpl; destruct (c 1) eqn:?; simplify_equality'.
  destruct (decide (i = 0)) as [->|].
  { by replace n with 0 by lia. }
  feed inversion (chain_cauchy c 1 i); auto with lia congruence.
  feed inversion (chain_cauchy c n i); simpl; auto with lia congruence.
Qed.
Instance excl_compl `{Cofe A} : Compl (excl A) := λ c,
  match Some_dec (maybe Excl (c 1)) with
  | inleft (exist x H) => Excl (compl (excl_chain c x H)) | inright _ => c 1
  end.
Local Instance excl_cofe `{Cofe A} : Cofe (excl A).
Proof.
  split.
  * intros mx my; split; [by destruct 1; constructor; apply equiv_dist|].
    intros Hxy; feed inversion (Hxy 1); subst; constructor; apply equiv_dist.
    by intros n; feed inversion (Hxy n).
  * intros n; split.
    + by intros [x| |]; constructor.
    + by destruct 1; constructor.
    + destruct 1; inversion_clear 1; constructor; etransitivity; eauto.
  * by inversion_clear 1; constructor; apply dist_S.
  * constructor.
  * intros c n; unfold compl, excl_compl.
    destruct (decide (n = 0)) as [->|]; [constructor|].
    destruct (Some_dec (maybe Excl (c 1))) as [[x Hx]|].
    { assert (c 1 = Excl x) by (by destruct (c 1); simplify_equality').
      assert ( y, c n = Excl y) as [y Hy].
      { feed inversion (chain_cauchy c 1 n); try congruence; eauto with lia. }
      rewrite Hy; constructor.
      by rewrite (conv_compl (excl_chain c x Hx) n); simpl; rewrite Hy. }
    feed inversion (chain_cauchy c 1 n); auto with lia; constructor.
    destruct (c 1); simplify_equality'.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
64
65
66
67
68
69
70
Instance Excl_timeless `{Equiv A, Dist A} (x : excl A) :
  Timeless x  Timeless (Excl x).
Proof. by inversion_clear 2; constructor; apply (timeless _). Qed.
Instance ExclUnit_timeless `{Equiv A, Dist A} : Timeless (@ExclUnit A).
Proof. by inversion_clear 1; constructor. Qed.
Instance ExclBot_timeless `{Equiv A, Dist A} : Timeless (@ExclBot A).
Proof. by inversion_clear 1; constructor. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
71
72

(* CMRA *)
Robbert Krebbers's avatar
Robbert Krebbers committed
73
74
Instance excl_valid {A} : Valid (excl A) := λ x,
  match x with Excl _ | ExclUnit => True | ExclBot => False end.
Robbert Krebbers's avatar
Robbert Krebbers committed
75
76
Instance excl_validN {A} : ValidN (excl A) := λ n x,
  match x with Excl _ | ExclUnit => True | ExclBot => n = 0 end.
77
78
Instance excl_empty {A} : Empty (excl A) := ExclUnit.
Instance excl_unit {A} : Unit (excl A) := λ _, .
Robbert Krebbers's avatar
Robbert Krebbers committed
79
80
81
82
83
84
85
86
87
88
89
90
Instance excl_op {A} : Op (excl A) := λ x y,
  match x, y with
  | Excl x, ExclUnit | ExclUnit, Excl x => Excl x
  | ExclUnit, ExclUnit => ExclUnit
  | _, _=> ExclBot
  end.
Instance excl_minus {A} : Minus (excl A) := λ x y,
  match x, y with
  | _, ExclUnit => x
  | Excl _, Excl _ => ExclUnit
  | _, _ => ExclBot
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
91
Instance excl_cmra `{Cofe A} : CMRA (excl A).
Robbert Krebbers's avatar
Robbert Krebbers committed
92
93
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
94
95
  * apply _.
  * by intros n []; destruct 1; constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
96
  * constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
97
98
99
100
101
102
  * by destruct 1 as [? []| | |]; intros ?.
  * by destruct 1; inversion_clear 1; constructor.
  * by intros [].
  * intros n [?| |]; simpl; auto with lia.
  * intros x; split; [by intros ? [|n]; destruct x|].
    by intros Hx; specialize (Hx 1); destruct x.
Robbert Krebbers's avatar
Robbert Krebbers committed
103
104
105
106
  * by intros [?| |] [?| |] [?| |]; constructor.
  * by intros [?| |] [?| |]; constructor.
  * by intros [?| |]; constructor.
  * constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
107
108
109
  * by intros n [?| |] [?| |]; exists .
  * by intros n [?| |] [?| |].
  * by intros n [?| |] [?| |] [[?| |] Hz]; inversion_clear Hz; constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
110
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
111
Instance excl_empty_ra `{Cofe A} : RAEmpty (excl A).
112
Proof. split. done. by intros []. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
113
114
115
116
117
118
119
120
121
Instance excl_extend `{Cofe A} : CMRAExtend (excl A).
Proof.
  intros [|n] x y1 y2 ? Hx; [by exists (x,); destruct x|].
  by exists match y1, y2 with
    | Excl a1, Excl a2 => (Excl a1, Excl a2)
    | ExclBot, _ => (ExclBot, y2) | _, ExclBot => (y1, ExclBot)
    | ExclUnit, _ => (ExclUnit, x) | _, ExclUnit => (x, ExclUnit)
    end; destruct y1, y2; inversion_clear Hx; repeat constructor.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
122
123
Instance excl_valid_timeless {A} (x : excl A) : ValidTimeless x.
Proof. by destruct x; intros ?. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
124
125

(* Updates *)
Robbert Krebbers's avatar
Robbert Krebbers committed
126
Lemma excl_update {A} (x : A) y :  y  Excl x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
127
128
Proof. by destruct y; intros ? [?| |]. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
(* Functor *)
Definition exclRA (A : cofeT) : cmraT := CMRAT (excl A).
Instance excl_fmap : FMap excl := λ A B f x,
  match x with
  | Excl a => Excl (f a) | ExclUnit => ExclUnit | ExclBot => ExclBot
  end.
Instance excl_fmap_cmra_ne `{Dist A, Dist B} n :
  Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@fmap excl _ A B).
Proof. by intros f f' Hf; destruct 1; constructor; apply Hf. Qed.
Instance excl_fmap_cmra_monotone `{Cofe A, Cofe B} :
  ( n, Proper (dist n ==> dist n) f)  CMRAMonotone (fmap f : excl A  excl B).
Proof.
  split.
  * intros n x y [z Hy]; exists (f <$> z); rewrite Hy.
    by destruct x, z; constructor.
  * by intros n [a| |].
Qed.
Definition exclRA_map {A B : cofeT} (f : A -n> B) : exclRA A -n> exclRA B :=
  CofeMor (fmap f : exclRA A  exclRA B).
Lemma exclRA_map_ne A B n : Proper (dist n ==> dist n) (@exclRA_map A B).
Proof. by intros f f' Hf []; constructor; apply Hf. Qed.