atomic.v 5 KB
Newer Older
1
From stdpp Require Import namespaces.
2
3
From iris.program_logic Require Export weakestpre.
From iris.proofmode Require Import tactics classes.
4
From iris.bi.lib Require Export atomic.
5
From iris.bi Require Import telescopes.
6
7
Set Default Proof Using "Type".

8
9
10
(* This hard-codes the inner mask to be empty, because we have yet to find an
example where we want it to be anything else. *)
Definition atomic_wp `{irisG Λ Σ} {TA TB : tele}
11
  (e: expr Λ) (* expression *)
12
13
14
15
  (Eo : coPset) (* (outer) mask *)
  (α: TA  iProp Σ) (* atomic pre-condition *)
  (β: TA  TB  iProp Σ) (* atomic post-condition *)
  (f: TA  TB  val Λ) (* Turn the return data into the return value *)
16
  : iProp Σ :=
17
18
    ( Q (Φ : val Λ  iProp Σ), Q -
             atomic_update Eo  α β (λ.. x y, Q - Φ (f x y)) -
19
             WP e {{ Φ }})%I.
20
(* Note: To add a private postcondition, use
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
   atomic_update α β Eo Ei (λ x y, POST x y -∗ Φ (f x y)) *)

Notation "'<<<' ∀ x1 .. xn , α '>>>' e @ Eo '<<<' ∃ y1 .. yn , β , 'RET' v '>>>'" :=
  (atomic_wp (TA:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
             (TB:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
             e%E
             Eo
             (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, α%I) ..)
             (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn,
                         tele_app (TT:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
                         (λ y1, .. (λ yn, β%I) .. )
                        ) .. )
             (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn,
                         tele_app (TT:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
                         (λ y1, .. (λ yn, v%V) .. )
                        ) .. )
  )
  (at level 20, Eo, α, β, v at level 200, x1 binder, xn binder, y1 binder, yn binder,
   format "'[hv' '<<<'  ∀  x1  ..  xn ,  α  '>>>'  '/  ' e  @  Eo  '/' '[    ' '<<<'  ∃  y1  ..  yn ,  β ,  '/' 'RET'  v  '>>>' ']' ']'")
  : stdpp_scope.

Notation "'<<<' ∀ x1 .. xn , α '>>>' e @ Eo '<<<' β , 'RET' v '>>>'" :=
  (atomic_wp (TA:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
             (TB:=TeleO)
             e%E
             Eo
             (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn, α%I) ..)
             (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn,
                         tele_app (TT:=TeleO) β%I
                        ) .. )
             (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
                       λ x1, .. (λ xn,
                         tele_app (TT:=TeleO) v%V
                        ) .. )
  )
  (at level 20, Eo, α, β, v at level 200, x1 binder, xn binder,
   format "'[hv' '<<<'  ∀  x1  ..  xn ,  α  '>>>'  '/  ' e  @  Eo  '/' '[    ' '<<<'  β ,  '/' 'RET'  v  '>>>' ']' ']'")
  : stdpp_scope.

Notation "'<<<' α '>>>' e @ Eo '<<<' ∃ y1 .. yn , β , 'RET' v '>>>'" :=
  (atomic_wp (TA:=TeleO)
             (TB:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
             e%E
             Eo
             (tele_app (TT:=TeleO) α%I)
             (tele_app (TT:=TeleO) $
                       tele_app (TT:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
                         (λ y1, .. (λ yn, β%I) .. ))
             (tele_app (TT:=TeleO) $
                       tele_app (TT:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
                         (λ y1, .. (λ yn, v%V) .. ))
  )
  (at level 20, Eo, α, β, v at level 200, y1 binder, yn binder,
   format "'[hv' '<<<'  α  '>>>'  '/  ' e  @  Eo  '/' '[    ' '<<<'  ∃  y1  ..  yn ,  β ,  '/' 'RET'  v  '>>>' ']' ']'")
  : stdpp_scope.

Notation "'<<<' α '>>>' e @ Eo '<<<' β , 'RET' v '>>>'" :=
  (atomic_wp (TA:=TeleO)
             (TB:=TeleO)
             e%E
             Eo
             (tele_app (TT:=TeleO) α%I)
             (tele_app (TT:=TeleO) $ tele_app (TT:=TeleO) β%I)
             (tele_app (TT:=TeleO) $ tele_app (TT:=TeleO) v%V)
  )
  (at level 20, Eo, α, β, v at level 200,
   format "'[hv' '<<<'  α  '>>>'  '/  ' e  @  Eo  '/' '[    ' '<<<'  β ,  '/' 'RET'  v  '>>>' ']' ']'")
  : stdpp_scope.
94
95
96
97
98
99
100
101
102
103
104
105
106

(** Theory *)
Section lemmas.
  Context `{irisG Λ Σ} {TA TB : tele}.
  Notation iProp := (iProp Σ).
  Implicit Types (α : TA  iProp) (β : TA  TB  iProp) (f : TA  TB  val Λ).

  Lemma atomic_wp_seq e Eo α β f {HL : .. x, Laterable (α x)} :
    atomic_wp e Eo α β f -
     Φ, .. x, α x - (.. y, β x y - Φ (f x y)) - WP e {{ Φ }}.
  Proof.
    rewrite ->tforall_forall in HL.
    iIntros "Hwp" (Φ x) "Hα HΦ". iApply ("Hwp" with "[HΦ]"); first iAccu.
107
    iAuIntro. iAaccIntro with "Hα"; first by eauto. iIntros (y) "Hβ !>".
108
109
110
111
    (* FIXME: Using ssreflect rewrite does not work? *)
    rewrite ->!tele_app_bind. iIntros "HΦ". iApply "HΦ". done.
  Qed.
End lemmas.