derived.tex 23.3 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
\section{Derived proof rules and other constructions}
2

Ralf Jung's avatar
Ralf Jung committed
3
We will below abuse notation, using the \emph{term} meta-variables like $\val$ to range over (bound) \emph{variables} of the corresponding type.
Ralf Jung's avatar
Ralf Jung committed
4
5
6
7
We omit type annotations in binders and equality, when the type is clear from context.
We assume that the signature $\Sig$ embeds all the meta-level concepts we use, and their properties, into the logic.
(The Coq formalization is a \emph{shallow embedding} of the logic, so we have direct access to all meta-level notions within the logic anyways.)

8
9
\subsection{Base logic}

Ralf Jung's avatar
Ralf Jung committed
10
11
12
13
14
15
We collect here some important and frequently used derived proof rules.
\begin{mathparpagebreakable}
  \infer{}
  {\prop \Ra \propB \proves \prop \wand \propB}

  \infer{}
Ralf Jung's avatar
Ralf Jung committed
16
  {\prop * \Exists\var.\propB \provesIff \Exists\var. \prop * \propB}
Ralf Jung's avatar
Ralf Jung committed
17
18

  \infer{}
Ralf Jung's avatar
Ralf Jung committed
19
  {\prop * \All\var.\propB \proves \All\var. \prop * \propB}
Ralf Jung's avatar
Ralf Jung committed
20
21

  \infer{}
Ralf Jung's avatar
Ralf Jung committed
22
  {\always(\prop*\propB) \provesIff \always\prop * \always\propB}
Ralf Jung's avatar
Ralf Jung committed
23
24
25
26
27
28
29
30

  \infer{}
  {\always(\prop \Ra \propB) \proves \always\prop \Ra \always\propB}

  \infer{}
  {\always(\prop \wand \propB) \proves \always\prop \wand \always\propB}

  \infer{}
Ralf Jung's avatar
Ralf Jung committed
31
  {\always(\prop \wand \propB) \provesIff \always(\prop \Ra \propB)}
Ralf Jung's avatar
Ralf Jung committed
32
33
34
35
36
37
38
39
40
41
42

  \infer{}
  {\later(\prop \Ra \propB) \proves \later\prop \Ra \later\propB}

  \infer{}
  {\later(\prop \wand \propB) \proves \later\prop \wand \later\propB}

  \infer
  {\pfctx, \later\prop \proves \prop}
  {\pfctx \proves \prop}
\end{mathparpagebreakable}
43

44
45
46
47
48
\paragraph{Persistent assertions.}
\begin{defn}
  An assertion $\prop$ is \emph{persistent} if $\prop \proves \always\prop$.
\end{defn}

Ralf Jung's avatar
Ralf Jung committed
49
\ralf{Needs update.}
50
Of course, $\always\prop$ is persistent for any $\prop$.
Ralf Jung's avatar
Ralf Jung committed
51
Furthermore, by the proof rules given in \Sref{sec:proof-rules}, $t = t'$ as well as $\ownGhost\gname{\mcore\melt}$, $\mval(\melt)$ and $\knowInv\iname\prop$ are persistent.
52
53
54
55
Persistence is preserved by conjunction, disjunction, separating conjunction as well as universal and existential quantification.

In our proofs, we will implicitly add and remove $\always$ from persistent assertions as necessary, and generally treat them like normal, non-linear assumptions.

Ralf Jung's avatar
Ralf Jung committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
\paragraph{Timeless assertions.}

We can show that the following additional closure properties hold for timeless assertions:

\begin{mathparpagebreakable}
  \infer
  {\vctx \proves \timeless{\prop} \and \vctx \proves \timeless{\propB}}
  {\vctx \proves \timeless{\prop \land \propB}}

  \infer
  {\vctx \proves \timeless{\prop} \and \vctx \proves \timeless{\propB}}
  {\vctx \proves \timeless{\prop \lor \propB}}

  \infer
  {\vctx \proves \timeless{\prop} \and \vctx \proves \timeless{\propB}}
  {\vctx \proves \timeless{\prop * \propB}}

  \infer
  {\vctx \proves \timeless{\prop}}
  {\vctx \proves \timeless{\always\prop}}
\end{mathparpagebreakable}


79
80
\subsection{Program logic}

Ralf Jung's avatar
Ralf Jung committed
81
Hoare triples and view shifts are syntactic sugar for weakest (liberal) preconditions and primitive view shifts, respectively:
82
\[
83
\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask] \eqdef \always{(\prop \Ra \wpre{\expr}[\mask]{\lambda\Ret\val.\propB})}
84
85
86
87
88
89
\qquad\qquad
\begin{aligned}
\prop \vs[\mask_1][\mask_2] \propB &\eqdef \always{(\prop \Ra \pvs[\mask_1][\mask_2] {\propB})} \\
\prop \vsE[\mask_1][\mask_2] \propB &\eqdef \prop \vs[\mask_1][\mask_2] \propB \land \propB \vs[\mask2][\mask_1] \prop
\end{aligned}
\]
Ralf Jung's avatar
Ralf Jung committed
90
We write just one mask for a view shift when $\mask_1 = \mask_2$.
91
92
Clearly, all of these assertions are persistent.
The convention for omitted masks is similar to the base logic:
Ralf Jung's avatar
Ralf Jung committed
93
94
95
An omitted $\mask$ is $\top$ for Hoare triples and $\emptyset$ for view shifts.


Ralf Jung's avatar
Ralf Jung committed
96
\paragraph{View shifts.}
97
The following rules can be derived for view shifts.
Ralf Jung's avatar
Ralf Jung committed
98

99
100
\begin{mathparpagebreakable}
\inferH{vs-update}
Ralf Jung's avatar
Ralf Jung committed
101
  {\melt \mupd \meltsB}
Ralf Jung's avatar
Ralf Jung committed
102
  {\ownGhost\gname{\melt} \vs \exists \meltB \in \meltsB.\; \ownGhost\gname{\meltB}}
Ralf Jung's avatar
Ralf Jung committed
103
\and
104
\inferH{vs-trans}
Ralf Jung's avatar
Ralf Jung committed
105
106
107
  {\prop \vs[\mask_1][\mask_2] \propB \and \propB \vs[\mask_2][\mask_3] \propC \and \mask_2 \subseteq \mask_1 \cup \mask_3}
  {\prop \vs[\mask_1][\mask_3] \propC}
\and
108
\inferH{vs-imp}
Ralf Jung's avatar
Ralf Jung committed
109
110
111
  {\always{(\prop \Ra \propB)}}
  {\prop \vs[\emptyset] \propB}
\and
112
\inferH{vs-mask-frame}
Ralf Jung's avatar
Ralf Jung committed
113
  {\prop \vs[\mask_1][\mask_2] \propB}
114
  {\prop \vs[\mask_1 \uplus \mask'][\mask_2 \uplus \mask'] \propB}
Ralf Jung's avatar
Ralf Jung committed
115
\and
116
117
118
119
120
\inferH{vs-frame}
  {\prop \vs[\mask_1][\mask_2] \propB}
  {\prop * \propC \vs[\mask_1][\mask_2] \propB * \propC}
\and
\inferH{vs-timeless}
Ralf Jung's avatar
Ralf Jung committed
121
122
123
  {\timeless{\prop}}
  {\later \prop \vs \prop}
\and
124
125
126
127
128
\inferH{vs-allocI}
  {\infinite(\mask)}
  {\later{\prop} \vs[\mask] \exists \iname\in\mask.\; \knowInv{\iname}{\prop}}
\and
\axiomH{vs-openI}
Ralf Jung's avatar
Ralf Jung committed
129
130
  {\knowInv{\iname}{\prop} \proves \TRUE \vs[\{ \iname \} ][\emptyset] \later \prop}
\and
131
\axiomH{vs-closeI}
Ralf Jung's avatar
Ralf Jung committed
132
133
  {\knowInv{\iname}{\prop} \proves \later \prop \vs[\emptyset][\{ \iname \} ] \TRUE }

134
\inferHB{vs-disj}
Ralf Jung's avatar
Ralf Jung committed
135
136
137
  {\prop \vs[\mask_1][\mask_2] \propC \and \propB \vs[\mask_1][\mask_2] \propC}
  {\prop \lor \propB \vs[\mask_1][\mask_2] \propC}
\and
138
\inferHB{vs-exist}
Ralf Jung's avatar
Ralf Jung committed
139
140
141
  {\All \var. (\prop \vs[\mask_1][\mask_2] \propB)}
  {(\Exists \var. \prop) \vs[\mask_1][\mask_2] \propB}
\and
142
\inferHB{vs-box}
Ralf Jung's avatar
Ralf Jung committed
143
  {\always\propB \proves \prop \vs[\mask_1][\mask_2] \propC}
Ralf Jung's avatar
Ralf Jung committed
144
145
  {\prop \land \always{\propB} \vs[\mask_1][\mask_2] \propC}
 \and
146
\inferH{vs-false}
Ralf Jung's avatar
Ralf Jung committed
147
148
  {}
  {\FALSE \vs[\mask_1][\mask_2] \prop }
149
\end{mathparpagebreakable}
Ralf Jung's avatar
Ralf Jung committed
150
151


152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
\paragraph{Hoare triples.}
The following rules can be derived for Hoare triples.

\begin{mathparpagebreakable}
\inferH{Ht-ret}
  {}
  {\hoare{\TRUE}{\valB}{\Ret\val. \val = \valB}[\mask]}
\and
\inferH{Ht-bind}
  {\text{$\lctx$ is a context} \and \hoare{\prop}{\expr}{\Ret\val. \propB}[\mask] \\
   \All \val. \hoare{\propB}{\lctx(\val)}{\Ret\valB.\propC}[\mask]}
  {\hoare{\prop}{\lctx(\expr)}{\Ret\valB.\propC}[\mask]}
\and
\inferH{Ht-csq}
  {\prop \vs \prop' \\
    \hoare{\prop'}{\expr}{\Ret\val.\propB'}[\mask] \\   
   \All \val. \propB' \vs \propB}
  {\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask]}
\and
\inferH{Ht-mask-weaken}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask]}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask \uplus \mask']}
\\\\
\inferH{Ht-frame}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask]}
  {\hoare{\prop * \propC}{\expr}{\Ret\val. \propB * \propC}[\mask]}
\and
\inferH{Ht-frame-step}
Ralf Jung's avatar
Ralf Jung committed
180
181
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask] \and \toval(\expr) = \bot \and \mask_2 \subseteq \mask_2 \\\\ \propC_1 \vs[\mask_1][\mask_2] \later\propC_2 \and \propC_2 \vs[\mask_2][\mask_1] \propC_3}
  {\hoare{\prop * \propC_1}{\expr}{\Ret\val. \propB * \propC_3}[\mask \uplus \mask_1]}
182
183
184
185
186
187
\and
\inferH{Ht-atomic}
  {\prop \vs[\mask \uplus \mask'][\mask] \prop' \\
    \hoare{\prop'}{\expr}{\Ret\val.\propB'}[\mask] \\   
   \All\val. \propB' \vs[\mask][\mask \uplus \mask'] \propB \\
   \physatomic{\expr}
Ralf Jung's avatar
Ralf Jung committed
188
  }
189
  {\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask \uplus \mask']}
Ralf Jung's avatar
Ralf Jung committed
190
\and
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
\inferHB{Ht-disj}
  {\hoare{\prop}{\expr}{\Ret\val.\propC}[\mask] \and \hoare{\propB}{\expr}{\Ret\val.\propC}[\mask]}
  {\hoare{\prop \lor \propB}{\expr}{\Ret\val.\propC}[\mask]}
\and
\inferHB{Ht-exist}
  {\All \var. \hoare{\prop}{\expr}{\Ret\val.\propB}[\mask]}
  {\hoare{\Exists \var. \prop}{\expr}{\Ret\val.\propB}[\mask]}
\and
\inferHB{Ht-box}
  {\always\propB \proves \hoare{\prop}{\expr}{\Ret\val.\propC}[\mask]}
  {\hoare{\prop \land \always{\propB}}{\expr}{\Ret\val.\propC}[\mask]}
\and
\inferH{Ht-false}
  {}
  {\hoare{\FALSE}{\expr}{\Ret \val. \prop}[\mask]}
Ralf Jung's avatar
Ralf Jung committed
206
207
208
209
210
211
212
213
214
215
216
217
\and
\inferH{Ht-inv}
  {\hoare{\later\propC*\prop}{\expr}{\Ret\val.\later\propC*\propB}[\mask] \and
   \physatomic{\expr}
  }
  {\knowInv\iname\propC \proves \hoare{\prop}{\expr}{\Ret\val.\propB}[\mask \uplus \set\iname]}
\and
\inferH{Ht-inv-timeless}
  {\hoare{\propC*\prop}{\expr}{\Ret\val.\propC*\propB}[\mask] \and
   \physatomic{\expr} \and \timeless\propC
  }
  {\knowInv\iname\propC \proves \hoare{\prop}{\expr}{\Ret\val.\propB}[\mask \uplus \set\iname]}
218
\end{mathparpagebreakable}
Ralf Jung's avatar
Ralf Jung committed
219

Ralf Jung's avatar
Ralf Jung committed
220
\paragraph{Lifting of operational semantics.}
Ralf Jung's avatar
Ralf Jung committed
221
222
223
We can derive some specialized forms of the lifting axioms for the operational semantics.
\begin{mathparpagebreakable}
  \infer[wp-lift-atomic-step]
224
  {\atomic(\expr_1) \and
Ralf Jung's avatar
Ralf Jung committed
225
226
227
   \red(\expr_1, \state_1)}
  { {\begin{inbox}~~\later\ownPhys{\state_1} * \later\All \val_2, \state_2, \expr_\f. (\expr_1,\state_1 \step \ofval(\val),\state_2,\expr_\f)  \land \ownPhys{\state_2} \wand \prop[\val_2/\var] * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} {}\\ \proves  \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}
  \end{inbox}} }
Ralf Jung's avatar
Ralf Jung committed
228
229

  \infer[wp-lift-atomic-det-step]
230
  {\atomic(\expr_1) \and
Ralf Jung's avatar
Ralf Jung committed
231
   \red(\expr_1, \state_1) \and
Ralf Jung's avatar
Ralf Jung committed
232
233
   \All \expr'_2, \state'_2, \expr_\f'. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \state_2 = \state_2' \land \toval(\expr_2') = \val_2 \land \expr_\f = \expr_\f'}
  {\later\ownPhys{\state_1} * \later(\ownPhys{\state_2} \wand \prop[\val_2/\var] * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE}) \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
234
235
236
237

  \infer[wp-lift-pure-det-step]
  {\toval(\expr_1) = \bot \and
   \All \state_1. \red(\expr_1, \state_1) \and
Ralf Jung's avatar
Ralf Jung committed
238
239
   \All \state_1, \expr_2', \state_2, \expr_\f'. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \state_1 = \state_2 \land \expr_2 = \expr_2' \land \expr_\f = \expr_\f'}
  {\later ( \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE}) \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
240
\end{mathparpagebreakable}
Ralf Jung's avatar
Ralf Jung committed
241

Ralf Jung's avatar
Ralf Jung committed
242
\subsection{Global functor and ghost ownership}
Ralf Jung's avatar
Ralf Jung committed
243

Ralf Jung's avatar
Ralf Jung committed
244
\ralf{Should be entirely redundant.}
245
246
Hereinafter we assume the global CMRA functor (served up as a parameter to Iris) is obtained from a family of functors $(\iFunc_i)_{i \in I}$ for some finite $I$ by picking
\[ \iFunc(\cofe) \eqdef \prod_{i \in I} \textlog{GhName} \fpfn \iFunc_i(\cofe) \]
247
We don't care so much about what concretely $\textlog{GhName}$ is, as long as it is countable and infinite.
Ralf Jung's avatar
Ralf Jung committed
248
With $M_i \eqdef \iFunc_i(\iProp)$, we write $\ownGhost{\gname}{\melt : M_i}$ (or just $\ownGhost{\gname}{\melt}$ if $M_i$ is clear from the context) for $\ownM{[i \mapsto [\gname \mapsto \melt]]}$.
Ralf Jung's avatar
Ralf Jung committed
249
250
251
252
In other words, $\ownGhost{\gname}{\melt : M_i}$ asserts that in the current state of monoid $M_i$, the ``ghost location'' $\gname$ is allocated and we own piece $\melt$.

From~\ruleref{pvs-update}, \ruleref{vs-update} and the frame-preserving updates in~\Sref{sec:prodm} and~\Sref{sec:fpfnm}, we have the following derived rules.
\begin{mathparpagebreakable}
Ralf Jung's avatar
Ralf Jung committed
253
  \inferH{ghost-alloc-strong}{\text{$G$ infinite}}
Ralf Jung's avatar
Ralf Jung committed
254
255
256
  {  \TRUE \vs \Exists\gname\in G. \ownGhost\gname{\melt : M_i}
  }
  \and
Ralf Jung's avatar
Ralf Jung committed
257
  \axiomH{ghost-alloc}{
Ralf Jung's avatar
Ralf Jung committed
258
259
260
    \TRUE \vs \Exists\gname. \ownGhost\gname{\melt : M_i}
  }
  \and
Ralf Jung's avatar
Ralf Jung committed
261
  \inferH{ghost-update}
Ralf Jung's avatar
Ralf Jung committed
262
263
264
    {\melt \mupd_{M_i} B}
    {\ownGhost\gname{\melt : M_i} \vs \Exists \meltB\in B. \ownGhost\gname{\meltB : M_i}}
  \and
Ralf Jung's avatar
Ralf Jung committed
265
  \axiomH{ghost-op}
Ralf Jung's avatar
Ralf Jung committed
266
267
    {\ownGhost\gname{\melt : M_i} * \ownGhost\gname{\meltB : M_i} \Lra \ownGhost\gname{\melt\mtimes\meltB : M_i}}

Ralf Jung's avatar
Ralf Jung committed
268
  \axiomH{ghost-valid}
Ralf Jung's avatar
Ralf Jung committed
269
270
    {\ownGhost\gname{\melt : M_i} \Ra \mval_{M_i}(\melt)}

Ralf Jung's avatar
Ralf Jung committed
271
  \inferH{ghost-timeless}
Ralf Jung's avatar
Ralf Jung committed
272
273
274
    {\text{$\melt$ is a discrete COFE element}}
    {\timeless{\ownGhost\gname{\melt : M_i}}}
\end{mathparpagebreakable}
275

Ralf Jung's avatar
Ralf Jung committed
276
\subsection{Invariant identifier namespaces}
277

Ralf Jung's avatar
Ralf Jung committed
278
Let $\namesp \in \textlog{InvNamesp} \eqdef \textlog{list}(\textlog{InvName})$ be the type of \emph{namespaces} for invariant names.
279
280
281
282
283
Notice that there is an injection $\textlog{namesp\_inj}: \textlog{InvNamesp} \ra \textlog{InvName}$.
Whenever needed (in particular, for masks at view shifts and Hoare triples), we coerce $\namesp$ to its suffix-closure: \[\namecl\namesp \eqdef \setComp{\iname}{\Exists \namesp'. \iname = \textlog{namesp\_inj}(\namesp' \dplus \namesp)}\]
We use the notation $\namesp.\iname$ for the namespace $[\iname] \dplus \namesp$.

We define the inclusion relation on namespaces as $\namesp_1 \sqsubseteq \namesp_2 \Lra \Exists \namesp_3. \namesp_2 = \namesp_3 \dplus \namesp_1$, \ie $\namesp_1$ is a suffix of $\namesp_2$.
284
\ralf{TODO: This inclusion defn is now outdated.}
Ralf Jung's avatar
Ralf Jung committed
285
We have that $\namesp_1 \sqsubseteq \namesp_2 \Ra \namecl{\namesp_2} \subseteq \namecl{\namesp_1}$.
286

Ralf Jung's avatar
Ralf Jung committed
287
288
Similarly, we define $\namesp_1 \disj \namesp_2 \eqdef   \Exists \namesp_1', \namesp_2'. \namesp_1' \sqsubseteq \namesp_1 \land \namesp_2' \sqsubseteq \namesp_2 \land |\namesp_1'| = |\namesp_2'| \land \namesp_1' \neq \namesp_2'$, \ie there exists a distinguishing suffix.
We have that $\namesp_1 \disj \namesp_2 \Ra \namecl{\namesp_2} \disj \namecl{\namesp_1}$, and furthermore $\iname_1 \neq \iname_2 \Ra \namesp.\iname_1 \disj \namesp.\iname_2$.
289

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
We will overload the usual Iris notation for invariant assertions in the following:
\[ \knowInv\namesp\prop \eqdef \Exists \iname \in \namecl\namesp. \knowInv\iname{\prop} \]
We can now derive the following rules for this derived form of the invariant assertion:
\begin{mathpar}
  \axiom{\knowInv\namesp\prop \proves \always\knowInv\namesp\prop}

  \axiom{\later\prop \proves \pvs[\namesp] \knowInv\namesp\prop}

  \infer{\physatomic{\expr} \and \namesp \subseteq \mask \and
    \pfctx \proves \knowInv\namesp\prop \and
    \pfctx \proves \later\prop \wand \wpre\expr[\mask \setminus \namesp]{\Ret\val.\later\prop * \propB}}
  {\pfctx \proves \wpre\expr[\mask]{\Ret\val.\propB}}

  \infer{\namesp \subseteq \mask \and
    \pfctx \proves \knowInv\namesp\prop \and
    \pfctx \proves \later\prop \wand \pvs[\mask \setminus \namesp]{\later\prop * \propB}}
  {\pfctx \proves \pvs[\mask]{\propB}}

  \infer{\physatomic{\expr} \and \namesp \subseteq \mask \and
    \hoare{\later\prop*\propB}\expr{\Ret\val.\later\prop*\propC}[\mask \setminus \namesp]}
  {\knowInv\namesp\prop \proves \hoare\propB\expr{\Ret\val.\propC}[\mask]}

  \infer{\namesp \subseteq \mask \and
    \later\prop*\propB \vs[\mask \setminus \namesp] \later\prop*\propC}
  {\knowInv\namesp\prop \proves \propB \vs[\mask] \propC}
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
316

317
% TODO: These need syncing with Coq
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
% \subsection{STSs with interpretation}\label{sec:stsinterp}

% Building on \Sref{sec:stsmon}, after constructing the monoid $\STSMon{\STSS}$ for a particular STS, we can use an invariant to tie an interpretation, $\pred : \STSS \to \Prop$, to the STS's current state, recovering CaReSL-style reasoning~\cite{caresl}.

% An STS invariant asserts authoritative ownership of an STS's current state and that state's interpretation:
% \begin{align*}
%   \STSInv(\STSS, \pred, \gname) \eqdef{}& \Exists s \in \STSS. \ownGhost{\gname}{(s, \STSS, \emptyset):\STSMon{\STSS}} * \pred(s) \\
%   \STS(\STSS, \pred, \gname, \iname) \eqdef{}& \knowInv{\iname}{\STSInv(\STSS, \pred, \gname)}
% \end{align*}

% We can specialize \ruleref{NewInv}, \ruleref{InvOpen}, and \ruleref{InvClose} to STS invariants:
% \begin{mathpar}
%  \inferH{NewSts}
%   {\infinite(\mask)}
%   {\later\pred(s) \vs[\mask] \Exists \iname \in \mask, \gname.   \STS(\STSS, \pred, \gname, \iname) * \ownGhost{\gname}{(s, \STST \setminus \STSL(s)) : \STSMon{\STSS}}}
%  \and
%  \axiomH{StsOpen}
%   {  \STS(\STSS, \pred, \gname, \iname) \vdash \ownGhost{\gname}{(s_0, T) : \STSMon{\STSS}} \vsE[\{\iname\}][\emptyset] \Exists s\in \upclose(\{s_0\}, T). \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T):\STSMon{\STSS}}}
%  \and
%  \axiomH{StsClose}
%   {  \STS(\STSS, \pred, \gname, \iname), (s, T) \ststrans (s', T')  \proves \later\pred(s') * \ownGhost{\gname}{(s, S, T):\STSMon{\STSS}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{(s', T') : \STSMon{\STSS}} }
% \end{mathpar}
% \begin{proof}
% \ruleref{NewSts} uses \ruleref{NewGhost} to allocate $\ownGhost{\gname}{(s, \upclose(s, T), T) : \STSMon{\STSS}}$ where $T \eqdef \STST \setminus \STSL(s)$, and \ruleref{NewInv}.

% \ruleref{StsOpen} just uses \ruleref{InvOpen} and \ruleref{InvClose} on $\iname$, and the monoid equality $(s, \upclose(\{s_0\}, T), T) = (s, \STSS, \emptyset) \mtimes (\munit, \upclose(\{s_0\}, T), T)$.

% \ruleref{StsClose} applies \ruleref{StsStep} and \ruleref{InvClose}.
% \end{proof}
347

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
% Using these view shifts, we can prove STS variants of the invariant rules \ruleref{Inv} and \ruleref{VSInv}~(compare the former to CaReSL's island update rule~\cite{caresl}):
% \begin{mathpar}
%  \inferH{Sts}
%   {\All s \in \upclose(\{s_0\}, T). \hoare{\later\pred(s) * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * Q}[\mask]
%    \and \physatomic{\expr}}
%   {  \STS(\STSS, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P}{\expr}{\Ret \val. \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}[\mask \uplus \{\iname\}]}
%  \and
%  \inferH{VSSts}
%   {\forall s \in \upclose(\{s_0\}, T).\; \later\pred(s) * P \vs[\mask_1][\mask_2] \exists s', T'.\; (s, T) \ststrans (s', T') * \later\pred(s') * Q}
%   {  \STS(\STSS, \pred, \gname, \iname) \vdash \ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}] \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}
% \end{mathpar}

% \begin{proof}[Proof of \ruleref{Sts}]\label{pf:sts}
%  We have to show
%  \[\hoare{\ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P}{\expr}{\Ret \val. \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}[\mask \uplus \{\iname\}]\]
%  where $\val$, $s'$, $T'$ are free in $Q$.
364
 
365
366
%  First, by \ruleref{ACsq} with \ruleref{StsOpen} and \ruleref{StsClose} (after moving $(s, T) \ststrans (s', T')$ into the view shift using \ruleref{VSBoxOut}), it suffices to show
%  \[\hoareV{\Exists s\in \upclose(\{s_0\}, T). \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * P}{\expr}{\Ret \val. \Exists s, T, S, s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * \ownGhost{\gname}{(s, S, T):\STSMon{\STSS}} * Q(\val, s', T')}[\mask]\]
367

368
369
370
%  Now, use \ruleref{Exist} to move the $s$ from the precondition into the context and use \ruleref{Csq} to (i)~fix the $s$ and $T$ in the postcondition to be the same as in the precondition, and (ii)~fix $S \eqdef \upclose(\{s_0\}, T)$.
%  It remains to show:
%  \[\hoareV{s\in \upclose(\{s_0\}, T) * \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * Q(\val, s', T')}[\mask]\]
371
 
372
373
%  Finally, use \ruleref{BoxOut} to move $s\in \upclose(\{s_0\}, T)$ into the context, and \ruleref{Frame} on $\ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)}$:
%  \[s\in \upclose(\{s_0\}, T) \vdash \hoare{\later\pred(s) * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * Q(\val, s', T')}[\mask]\]
374
 
375
%  This holds by our premise.
Ralf Jung's avatar
Ralf Jung committed
376
% \end{proof}
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
% % \begin{proof}[Proof of \ruleref{VSSts}]
% % This is similar to above, so we only give the proof in short notation:

% % \hproof{%
% % 	Context: $\knowInv\iname{\STSInv(\STSS, \pred, \gname)}$ \\
% % 	\pline[\mask_1 \uplus \{\iname\}]{
% % 		\ownGhost\gname{(s_0, T)} * P
% % 	} \\
% % 	\pline[\mask_1]{%
% % 		\Exists s. \later\pred(s) * \ownGhost\gname{(s, S, T)} * P
% % 	} \qquad by \ruleref{StsOpen} \\
% % 	Context: $s \in S \eqdef \upclose(\{s_0\}, T)$ \\
% % 	\pline[\mask_2]{%
% % 		 \Exists s', T'. \later\pred(s') * Q(s', T') * \ownGhost\gname{(s, S, T)}
% % 	} \qquad by premiss \\
% % 	Context: $(s, T) \ststrans (s', T')$ \\
% % 	\pline[\mask_2 \uplus \{\iname\}]{
% % 		\ownGhost\gname{(s', T')} * Q(s', T')
% % 	} \qquad by \ruleref{StsClose}
% % }
% % \end{proof}

% \subsection{Authoritative monoids with interpretation}\label{sec:authinterp}

% Building on \Sref{sec:auth}, after constructing the monoid $\auth{M}$ for a cancellative monoid $M$, we can tie an interpretation, $\pred : \mcarp{M} \to \Prop$, to the authoritative element of $M$, recovering reasoning that is close to the sharing rule in~\cite{krishnaswami+:icfp12}.

% Let $\pred_\bot$ be the extension of $\pred$ to $\mcar{M}$ with $\pred_\bot(\mzero) = \FALSE$.
% Now define
% \begin{align*}
%   \AuthInv(M, \pred, \gname) \eqdef{}& \exists \melt \in \mcar{M}.\; \ownGhost{\gname}{\authfull \melt:\auth{M}} * \pred_\bot(\melt) \\
%   \Auth(M, \pred, \gname, \iname) \eqdef{}& M~\textlog{cancellative} \land \knowInv{\iname}{\AuthInv(M, \pred, \gname)}
% \end{align*}

% The frame-preserving updates for $\auth{M}$ gives rise to the following view shifts:
% \begin{mathpar}
%  \inferH{NewAuth}
%   {\infinite(\mask) \and M~\textlog{cancellative}}
%   {\later\pred_\bot(a) \vs[\mask] \exists \iname \in \mask, \gname.\; \Auth(M, \pred, \gname, \iname) * \ownGhost{\gname}{\authfrag a : \auth{M}}}
%  \and
%  \axiomH{AuthOpen}
Ralf Jung's avatar
Ralf Jung committed
418
%   {\Auth(M, \pred, \gname, \iname) \vdash \ownGhost{\gname}{\authfrag \melt : \auth{M}} \vsE[\{\iname\}][\emptyset] \exists \melt_\f.\; \later\pred_\bot(\melt \mtimes \melt_\f) * \ownGhost{\gname}{\authfull \melt \mtimes \melt_\f, \authfrag a:\auth{M}}}
419
420
%  \and
%  \axiomH{AuthClose}
Ralf Jung's avatar
Ralf Jung committed
421
%   {\Auth(M, \pred, \gname, \iname) \vdash \later\pred_\bot(\meltB \mtimes \melt_\f) * \ownGhost{\gname}{\authfull a \mtimes \melt_\f, \authfrag a:\auth{M}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{\authfrag \meltB : \auth{M}} }
422
423
424
425
426
% \end{mathpar}

% These view shifts in turn can be used to prove variants of the invariant rules:
% \begin{mathpar}
%  \inferH{Auth}
Ralf Jung's avatar
Ralf Jung committed
427
%   {\forall \melt_\f.\; \hoare{\later\pred_\bot(a \mtimes \melt_\f) * P}{\expr}{\Ret\val. \exists \meltB.\; \later\pred_\bot(\meltB\mtimes \melt_\f) * Q}[\mask]
428
429
430
431
%    \and \physatomic{\expr}}
%   {\Auth(M, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{\authfrag a:\auth{M}} * P}{\expr}{\Ret\val. \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q}[\mask \uplus \{\iname\}]}
%  \and
%  \inferH{VSAuth}
Ralf Jung's avatar
Ralf Jung committed
432
%   {\forall \melt_\f.\; \later\pred_\bot(a \mtimes \melt_\f) * P \vs[\mask_1][\mask_2] \exists \meltB.\; \later\pred_\bot(\meltB \mtimes \melt_\f) * Q(\meltB)}
433
434
435
436
437
438
439
440
%   {\Auth(M, \pred, \gname, \iname) \vdash
%    \ownGhost{\gname}{\authfrag a:\auth{M}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}]
%    \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q(\meltB)}
% \end{mathpar}


% \subsection{Ghost heap}
% \label{sec:ghostheap}%
Ralf Jung's avatar
Ralf Jung committed
441
% FIXME use the finmap provided by the global ghost ownership, instead of adding our own
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
% We define a simple ghost heap with fractional permissions.
% Some modules require a few ghost names per module instance to properly manage ghost state, but would like to expose to clients a single logical name (avoiding clutter).
% In such cases we use these ghost heaps.

% We seek to implement the following interface:
% \newcommand{\GRefspecmaps}{\textsf{GMapsTo}}%
% \begin{align*}
%  \exists& {\fgmapsto[]} : \textsort{Val} \times \mathbb{Q}_{>} \times \textsort{Val} \ra \textsort{Prop}.\;\\
%   & \All x, q, v. x \fgmapsto[q] v \Ra x \fgmapsto[q] v \land q \in (0, 1] \\
%   &\forall x, q_1, q_2, v, w.\; x \fgmapsto[q_1] v * x \fgmapsto[q_2] w \Leftrightarrow x \fgmapsto[q_1 + q_2] v * v = w\\
%   & \forall v.\; \TRUE \vs[\emptyset] \exists x.\; x \fgmapsto[1] v \\
%   & \forall x, v, w.\; x \fgmapsto[1] v \vs[\emptyset] x \fgmapsto[1] w
% \end{align*}
% We write $x \fgmapsto v$ for $\exists q.\; x \fgmapsto[q] v$ and $x \gmapsto v$ for $x \fgmapsto[1] v$.
% Note that $x \fgmapsto v$ is duplicable but cannot be boxed (as it depends on resources); \ie we have $x \fgmapsto v \Lra x \fgmapsto v * x \fgmapsto v$ but not $x \fgmapsto v \Ra \always x \fgmapsto v$.

% To implement this interface, allocate an instance $\gname_G$ of $\FHeap(\textdom{Val})$ and define
% \[
% 	x \fgmapsto[q] v \eqdef
% 	  \begin{cases}
%     	\ownGhost{\gname_G}{x \mapsto (q, v)} & \text{if $q \in (0, 1]$} \\
%     	\FALSE & \text{otherwise}
%     \end{cases}
% \]
% The view shifts in the specification follow immediately from \ruleref{GhostUpd} and the frame-preserving updates in~\Sref{sec:fheapm}.
% The first implication is immediate from the definition.
% The second implication follows by case distinction on $q_1 + q_2 \in (0, 1]$.
469

Ralf Jung's avatar
Ralf Jung committed
470
471
472
473
474

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: