csum.v 15.4 KB
Newer Older
1
From iris.algebra Require Export cmra.
2
3
From iris.base_logic Require Import base_logic.
From iris.algebra Require Import local_updates.
4
Set Default Proof Using "Type".
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
5
6
7
8
9
10
11
12
Local Arguments pcore _ _ !_ /.
Local Arguments cmra_pcore _ !_ /.
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Local Arguments cmra_validN _ _ !_ /.
Local Arguments cmra_valid _  !_ /.

Inductive csum (A B : Type) :=
13
14
15
  | Cinl : A  csum A B
  | Cinr : B  csum A B
  | CsumBot : csum A B.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
16
17
18
19
Arguments Cinl {_ _} _.
Arguments Cinr {_ _} _.
Arguments CsumBot {_ _}.

20
21
22
Instance: Params (@Cinl) 2 := {}.
Instance: Params (@Cinr) 2 := {}.
Instance: Params (@CsumBot) 2 := {}.
23

Robbert Krebbers's avatar
Robbert Krebbers committed
24
25
26
27
28
Instance maybe_Cinl {A B} : Maybe (@Cinl A B) := λ x,
  match x with Cinl a => Some a | _ => None end.
Instance maybe_Cinr {A B} : Maybe (@Cinr A B) := λ x,
  match x with Cinr b => Some b | _ => None end.

Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
29
Section cofe.
30
Context {A B : ofeT}.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
31
32
33
34
35
Implicit Types a : A.
Implicit Types b : B.

(* Cofe *)
Inductive csum_equiv : Equiv (csum A B) :=
36
  | Cinl_equiv a a' : a  a'  Cinl a  Cinl a'
Jacques-Henri Jourdan's avatar
Typo.    
Jacques-Henri Jourdan committed
37
  | Cinr_equiv b b' : b  b'  Cinr b  Cinr b'
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
38
39
40
  | CsumBot_equiv : CsumBot  CsumBot.
Existing Instance csum_equiv.
Inductive csum_dist : Dist (csum A B) :=
41
  | Cinl_dist n a a' : a {n} a'  Cinl a {n} Cinl a'
Jacques-Henri Jourdan's avatar
Typo.    
Jacques-Henri Jourdan committed
42
  | Cinr_dist n b b' : b {n} b'  Cinr b {n} Cinr b'
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
43
44
45
  | CsumBot_dist n : CsumBot {n} CsumBot.
Existing Instance csum_dist.

46
Global Instance Cinl_ne : NonExpansive (@Cinl A B).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
47
48
49
50
51
52
53
Proof. by constructor. Qed.
Global Instance Cinl_proper : Proper (() ==> ()) (@Cinl A B).
Proof. by constructor. Qed.
Global Instance Cinl_inj : Inj () () (@Cinl A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinl_inj_dist n : Inj (dist n) (dist n) (@Cinl A B).
Proof. by inversion_clear 1. Qed.
54
Global Instance Cinr_ne : NonExpansive (@Cinr A B).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
55
56
57
58
59
60
61
62
Proof. by constructor. Qed.
Global Instance Cinr_proper : Proper (() ==> ()) (@Cinr A B).
Proof. by constructor. Qed.
Global Instance Cinr_inj : Inj () () (@Cinr A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinr_inj_dist n : Inj (dist n) (dist n) (@Cinr A B).
Proof. by inversion_clear 1. Qed.

63
Definition csum_ofe_mixin : OfeMixin (csum A B).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
64
65
66
67
68
69
70
71
72
73
74
75
Proof.
  split.
  - intros mx my; split.
    + by destruct 1; constructor; try apply equiv_dist.
    + intros Hxy; feed inversion (Hxy 0); subst; constructor; try done;
      apply equiv_dist=> n; by feed inversion (Hxy n).
  - intros n; split.
    + by intros [|a|]; constructor.
    + by destruct 1; constructor.
    + destruct 1; inversion_clear 1; constructor; etrans; eauto.
  - by inversion_clear 1; constructor; apply dist_S.
Qed.
76
Canonical Structure csumO : ofeT := OfeT (csum A B) csum_ofe_mixin.
77

78
Program Definition csum_chain_l (c : chain csumO) (a : A) : chain A :=
79
80
  {| chain_car n := match c n return _ with Cinl a' => a' | _ => a end |}.
Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
81
Program Definition csum_chain_r (c : chain csumO) (b : B) : chain B :=
82
83
  {| chain_car n := match c n return _ with Cinr b' => b' | _ => b end |}.
Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
84
Definition csum_compl `{Cofe A, Cofe B} : Compl csumO := λ c,
85
86
87
88
89
  match c 0 with
  | Cinl a => Cinl (compl (csum_chain_l c a))
  | Cinr b => Cinr (compl (csum_chain_r c b))
  | CsumBot => CsumBot
  end.
90
Global Program Instance csum_cofe `{Cofe A, Cofe B} : Cofe csumO :=
91
92
93
94
95
96
97
98
  {| compl := csum_compl |}.
Next Obligation.
  intros ?? n c; rewrite /compl /csum_compl.
  feed inversion (chain_cauchy c 0 n); first auto with lia; constructor.
  + rewrite (conv_compl n (csum_chain_l c a')) /=. destruct (c n); naive_solver.
  + rewrite (conv_compl n (csum_chain_r c b')) /=. destruct (c n); naive_solver.
Qed.

99
Global Instance csum_ofe_discrete :
100
  OfeDiscrete A  OfeDiscrete B  OfeDiscrete csumO.
101
Proof. by inversion_clear 3; constructor; apply (discrete _). Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
102
Global Instance csum_leibniz :
103
  LeibnizEquiv A  LeibnizEquiv B  LeibnizEquiv csumO.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
104
105
Proof. by destruct 3; f_equal; apply leibniz_equiv. Qed.

106
107
108
109
Global Instance Cinl_discrete a : Discrete a  Discrete (Cinl a).
Proof. by inversion_clear 2; constructor; apply (discrete _). Qed.
Global Instance Cinr_discrete b : Discrete b  Discrete (Cinr b).
Proof. by inversion_clear 2; constructor; apply (discrete _). Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
110
111
End cofe.

112
Arguments csumO : clear implicits.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
113
114
115
116
117
118
119
120
121

(* Functor on COFEs *)
Definition csum_map {A A' B B'} (fA : A  A') (fB : B  B')
                    (x : csum A B) : csum A' B' :=
  match x with
  | Cinl a => Cinl (fA a)
  | Cinr b => Cinr (fB b)
  | CsumBot => CsumBot
  end.
122
Instance: Params (@csum_map) 4 := {}.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
123
124
125
126
127
128
129

Lemma csum_map_id {A B} (x : csum A B) : csum_map id id x = x.
Proof. by destruct x. Qed.
Lemma csum_map_compose {A A' A'' B B' B''} (f : A  A') (f' : A'  A'')
                       (g : B  B') (g' : B'  B'') (x : csum A B) :
  csum_map (f'  f) (g'  g) x = csum_map f' g' (csum_map f g x).
Proof. by destruct x. Qed.
130
Lemma csum_map_ext {A A' B B' : ofeT} (f f' : A  A') (g g' : B  B') x :
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
131
132
  ( x, f x  f' x)  ( x, g x  g' x)  csum_map f g x  csum_map f' g' x.
Proof. by destruct x; constructor. Qed.
133
Instance csum_map_cmra_ne {A A' B B' : ofeT} n :
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
134
135
136
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==> dist n ==> dist n)
         (@csum_map A A' B B').
Proof. intros f f' Hf g g' Hg []; destruct 1; constructor; by apply Hf || apply Hg. Qed.
137
138
139
140
141
Definition csumO_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  csumO A B -n> csumO A' B' :=
  OfeMor (csum_map f g).
Instance csumO_map_ne A A' B B' :
  NonExpansive2 (@csumO_map A A' B B').
142
Proof. by intros n f f' Hf g g' Hg []; constructor. Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

Section cmra.
Context {A B : cmraT}.
Implicit Types a : A.
Implicit Types b : B.

(* CMRA *)
Instance csum_valid : Valid (csum A B) := λ x,
  match x with
  | Cinl a =>  a
  | Cinr b =>  b
  | CsumBot => False
  end.
Instance csum_validN : ValidN (csum A B) := λ n x,
  match x with
  | Cinl a => {n} a
  | Cinr b => {n} b
  | CsumBot => False
  end.
Instance csum_pcore : PCore (csum A B) := λ x,
  match x with
  | Cinl a => Cinl <$> pcore a
  | Cinr b => Cinr <$> pcore b
  | CsumBot => Some CsumBot
  end.
Instance csum_op : Op (csum A B) := λ x y,
  match x, y with
  | Cinl a, Cinl a' => Cinl (a  a')
  | Cinr b, Cinr b' => Cinr (b  b')
  | _, _ => CsumBot
  end.

Lemma Cinl_op a a' : Cinl a  Cinl a' = Cinl (a  a').
Proof. done. Qed.
Lemma Cinr_op b b' : Cinr b  Cinr b' = Cinr (b  b').
Proof. done. Qed.

Lemma csum_included x y :
  x  y  y = CsumBot  ( a a', x = Cinl a  y = Cinl a'  a  a')
                       ( b b', x = Cinr b  y = Cinr b'  b  b').
Proof.
  split.
185
186
187
188
189
190
191
  - unfold included. intros [[a'|b'|] Hy]; destruct x as [a|b|];
      inversion_clear Hy; eauto 10.
  - intros [->|[(a&a'&->&->&c&?)|(b&b'&->&->&c&?)]].
    + destruct x; exists CsumBot; constructor.
    + exists (Cinl c); by constructor.
    + exists (Cinr c); by constructor.
Qed.
192
193
194
195
Lemma Cinl_included a a' : Cinl a  Cinl a'  a  a'.
Proof. rewrite csum_included. naive_solver. Qed.
Lemma Cinr_included b b' : Cinr b  Cinr b'  b  b'.
Proof. rewrite csum_included. naive_solver. Qed.
196
197
198
199
200
201
202
203

Lemma csum_includedN n x y :
  x {n} y  y = CsumBot  ( a a', x = Cinl a  y = Cinl a'  a {n} a')
                          ( b b', x = Cinr b  y = Cinr b'  b {n} b').
Proof.
  split.
  - unfold includedN. intros [[a'|b'|] Hy]; destruct x as [a|b|];
      inversion_clear Hy; eauto 10.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
204
205
206
207
208
209
  - intros [->|[(a&a'&->&->&c&?)|(b&b'&->&->&c&?)]].
    + destruct x; exists CsumBot; constructor.
    + exists (Cinl c); by constructor.
    + exists (Cinr c); by constructor.
Qed.

210
Lemma csum_cmra_mixin : CmraMixin (csum A B).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
211
212
Proof.
  split.
213
  - intros [] n; destruct 1; constructor; by ofe_subst.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
214
215
216
217
218
219
220
  - intros ???? [n a a' Ha|n b b' Hb|n] [=]; subst; eauto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_ne n a a' ca) as (ca'&->&?); auto.
      exists (Cinl ca'); by repeat constructor.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_ne n b b' cb) as (cb'&->&?); auto.
      exists (Cinr cb'); by repeat constructor.
221
  - intros ? [a|b|] [a'|b'|] H; inversion_clear H; ofe_subst; done.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
  - intros [a|b|]; rewrite /= ?cmra_valid_validN; naive_solver eauto using O.
  - intros n [a|b|]; simpl; auto using cmra_validN_S.
  - intros [a1|b1|] [a2|b2|] [a3|b3|]; constructor; by rewrite ?assoc.
  - intros [a1|b1|] [a2|b2|]; constructor; by rewrite 1?comm.
  - intros [a|b|] ? [=]; subst; auto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      constructor; eauto using cmra_pcore_l.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      constructor; eauto using cmra_pcore_l.
  - intros [a|b|] ? [=]; subst; auto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      feed inversion (cmra_pcore_idemp a ca); repeat constructor; auto.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      feed inversion (cmra_pcore_idemp b cb); repeat constructor; auto.
  - intros x y ? [->|[(a&a'&->&->&?)|(b&b'&->&->&?)]]%csum_included [=].
    + exists CsumBot. rewrite csum_included; eauto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
239
      destruct (cmra_pcore_mono a a' ca) as (ca'&->&?); auto.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
240
241
      exists (Cinl ca'). rewrite csum_included; eauto 10.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
242
      destruct (cmra_pcore_mono b b' cb) as (cb'&->&?); auto.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
243
244
245
      exists (Cinr cb'). rewrite csum_included; eauto 10.
  - intros n [a1|b1|] [a2|b2|]; simpl; eauto using cmra_validN_op_l; done.
  - intros n [a|b|] y1 y2 Hx Hx'.
246
247
    + destruct y1 as [a1|b1|], y2 as [a2|b2|]; try by exfalso; inversion Hx'.
      destruct (cmra_extend n a a1 a2) as (z1&z2&?&?&?); [done|apply (inj Cinl), Hx'|].
248
      exists (Cinl z1), (Cinl z2). by repeat constructor.
249
250
    + destruct y1 as [a1|b1|], y2 as [a2|b2|]; try by exfalso; inversion Hx'.
      destruct (cmra_extend n b b1 b2) as (z1&z2&?&?&?); [done|apply (inj Cinr), Hx'|].
251
252
      exists (Cinr z1), (Cinr z2). by repeat constructor.
    + by exists CsumBot, CsumBot; destruct y1, y2; inversion_clear Hx'.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
253
Qed.
254
Canonical Structure csumR := CmraT (csum A B) csum_cmra_mixin.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
255
256

Global Instance csum_cmra_discrete :
257
  CmraDiscrete A  CmraDiscrete B  CmraDiscrete csumR.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
258
259
260
261
262
Proof.
  split; first apply _.
  by move=>[a|b|] HH /=; try apply cmra_discrete_valid.
Qed.

263
264
265
266
Global Instance Cinl_core_id a : CoreId a  CoreId (Cinl a).
Proof. rewrite /CoreId /=. inversion_clear 1; by repeat constructor. Qed.
Global Instance Cinr_core_id b : CoreId b  CoreId (Cinr b).
Proof. rewrite /CoreId /=. inversion_clear 1; by repeat constructor. Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
267

268
Global Instance Cinl_exclusive a : Exclusive a  Exclusive (Cinl a).
269
Proof. by move=> H[]? =>[/H||]. Qed.
270
Global Instance Cinr_exclusive b : Exclusive b  Exclusive (Cinr b).
271
Proof. by move=> H[]? =>[|/H|]. Qed.
272

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
Global Instance Cinl_cancelable a : Cancelable a  Cancelable (Cinl a).
Proof.
  move=> ?? [y|y|] [z|z|] ? EQ //; inversion_clear EQ.
  constructor. by eapply (cancelableN a).
Qed.
Global Instance Cinr_cancelable b : Cancelable b  Cancelable (Cinr b).
Proof.
  move=> ?? [y|y|] [z|z|] ? EQ //; inversion_clear EQ.
  constructor. by eapply (cancelableN b).
Qed.

Global Instance Cinl_id_free a : IdFree a  IdFree (Cinl a).
Proof. intros ? [] ? EQ; inversion_clear EQ. by eapply id_free0_r. Qed.
Global Instance Cinr_id_free b : IdFree b  IdFree (Cinr b).
Proof. intros ? [] ? EQ; inversion_clear EQ. by eapply id_free0_r. Qed.

Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
289
290
(** Internalized properties *)
Lemma csum_equivI {M} (x y : csum A B) :
291
292
293
294
295
296
  x  y @{uPredI M} match x, y with
                      | Cinl a, Cinl a' => a  a'
                      | Cinr b, Cinr b' => b  b'
                      | CsumBot, CsumBot => True
                      | _, _ => False
                      end.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
297
298
299
300
301
Proof.
  uPred.unseal; do 2 split; first by destruct 1.
  by destruct x, y; try destruct 1; try constructor.
Qed.
Lemma csum_validI {M} (x : csum A B) :
302
303
304
305
306
   x @{uPredI M} match x with
                    | Cinl a =>  a
                    | Cinr b =>  b
                    | CsumBot => False
                    end.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
Proof. uPred.unseal. by destruct x. Qed.

(** Updates *)
Lemma csum_update_l (a1 a2 : A) : a1 ~~> a2  Cinl a1 ~~> Cinl a2.
Proof.
  intros Ha n [[a|b|]|] ?; simpl in *; auto.
  - by apply (Ha n (Some a)).
  - by apply (Ha n None).
Qed.
Lemma csum_update_r (b1 b2 : B) : b1 ~~> b2  Cinr b1 ~~> Cinr b2.
Proof.
  intros Hb n [[a|b|]|] ?; simpl in *; auto.
  - by apply (Hb n (Some b)).
  - by apply (Hb n None).
Qed.
Lemma csum_updateP_l (P : A  Prop) (Q : csum A B  Prop) a :
  a ~~>: P  ( a', P a'  Q (Cinl a'))  Cinl a ~~>: Q.
Proof.
  intros Hx HP n mf Hm. destruct mf as [[a'|b'|]|]; try by destruct Hm.
  - destruct (Hx n (Some a')) as (c&?&?); naive_solver.
  - destruct (Hx n None) as (c&?&?); naive_solver eauto using cmra_validN_op_l.
Qed.
Lemma csum_updateP_r (P : B  Prop) (Q : csum A B  Prop) b :
  b ~~>: P  ( b', P b'  Q (Cinr b'))  Cinr b  ~~>: Q.
Proof.
  intros Hx HP n mf Hm. destruct mf as [[a'|b'|]|]; try by destruct Hm.
  - destruct (Hx n (Some b')) as (c&?&?); naive_solver.
  - destruct (Hx n None) as (c&?&?); naive_solver eauto using cmra_validN_op_l.
Qed.
Lemma csum_updateP'_l (P : A  Prop) a :
  a ~~>: P  Cinl a ~~>: λ m',  a', m' = Cinl a'  P a'.
Proof. eauto using csum_updateP_l. Qed.
Lemma csum_updateP'_r (P : B  Prop) b :
  b ~~>: P  Cinr b ~~>: λ m',  b', m' = Cinr b'  P b'.
Proof. eauto using csum_updateP_r. Qed.
342
343
344

Lemma csum_local_update_l (a1 a2 a1' a2' : A) :
  (a1,a2) ~l~> (a1',a2')  (Cinl a1,Cinl a2) ~l~> (Cinl a1',Cinl a2').
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
345
Proof.
346
347
348
349
  intros Hup n mf ? Ha1; simpl in *.
  destruct (Hup n (mf = maybe Cinl)); auto.
  { by destruct mf as [[]|]; inversion_clear Ha1. }
  split. done. by destruct mf as [[]|]; inversion_clear Ha1; constructor.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
350
Qed.
351
352
Lemma csum_local_update_r (b1 b2 b1' b2' : B) :
  (b1,b2) ~l~> (b1',b2')  (Cinr b1,Cinr b2) ~l~> (Cinr b1',Cinr b2').
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
353
Proof.
354
355
356
357
  intros Hup n mf ? Ha1; simpl in *.
  destruct (Hup n (mf = maybe Cinr)); auto.
  { by destruct mf as [[]|]; inversion_clear Ha1. }
  split. done. by destruct mf as [[]|]; inversion_clear Ha1; constructor.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
358
Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
359
360
361
362
363
End cmra.

Arguments csumR : clear implicits.

(* Functor *)
364
Instance csum_map_cmra_morphism {A A' B B' : cmraT} (f : A  A') (g : B  B') :
365
  CmraMorphism f  CmraMorphism g  CmraMorphism (csum_map f g).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
366
367
Proof.
  split; try apply _.
368
369
370
  - intros n [a|b|]; simpl; auto using cmra_morphism_validN.
  - move=> [a|b|]=>//=; rewrite cmra_morphism_pcore; by destruct pcore.
  - intros [xa|ya|] [xb|yb|]=>//=; by rewrite -cmra_morphism_op.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
371
372
373
Qed.

Program Definition csumRF (Fa Fb : rFunctor) : rFunctor := {|
374
  rFunctor_car A _ B _ := csumR (rFunctor_car Fa A B) (rFunctor_car Fb A B);
375
  rFunctor_map A1 _ A2 _ B1 _ B2 _ fg := csumO_map (rFunctor_map Fa fg) (rFunctor_map Fb fg)
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
376
377
|}.
Next Obligation.
378
  by intros Fa Fb A1 ? A2 ? B1 ? B2 ? n f g Hfg; apply csumO_map_ne; try apply rFunctor_ne.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
379
380
Qed.
Next Obligation.
381
  intros Fa Fb A ? B ? x. rewrite /= -{2}(csum_map_id x).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
382
383
384
  apply csum_map_ext=>y; apply rFunctor_id.
Qed.
Next Obligation.
385
  intros Fa Fb A1 ? A2 ? A3 ? B1 ? B2 ? B3 ? f g f' g' x. rewrite /= -csum_map_compose.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
386
387
388
389
390
391
392
  apply csum_map_ext=>y; apply rFunctor_compose.
Qed.

Instance csumRF_contractive Fa Fb :
  rFunctorContractive Fa  rFunctorContractive Fb 
  rFunctorContractive (csumRF Fa Fb).
Proof.
393
  intros ?? A1 ? A2 ? B1 ? B2 ? n f g Hfg.
394
  by apply csumO_map_ne; try apply rFunctor_contractive.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
395
Qed.