ltac_tactics.v 105 KB
Newer Older
1
From iris.proofmode Require Import coq_tactics reduction.
2
From iris.proofmode Require Import base intro_patterns spec_patterns sel_patterns.
3
From iris.bi Require Export bi telescopes.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
From stdpp Require Import namespaces.
From iris.proofmode Require Export classes notation.
From stdpp Require Import hlist pretty.
Set Default Proof Using "Type".
Export ident.

(** For most of the tactics, we want to have tight control over the order and
way in which type class inference is performed. To that end, many tactics make
use of [notypeclasses refine] and the [iSolveTC] tactic to manually invoke type
class inference.

The tactic [iSolveTC] does not use [apply _], as that often leads to issues
because it will try to solve all evars whose type is a typeclass, in
dependency order (according to Matthieu). If one fails, it aborts. However, we
generally rely on progress on the main goal to be solved to make progress
elsewhere. With [typeclasses eauto], that seems to work better.

A drawback of [typeclasses eauto] is that it is multi-success, i.e. whenever
subsequent tactics fail, it will backtrack to [typeclasses eauto] to try the
next type class instance. This is almost always undesired and leads to poor
performance and horrible error messages, so we wrap it in a [once]. *)
Ltac iSolveTC :=
  solve [once (typeclasses eauto)].

28
29
30
(** Tactic used for solving side-conditions arising from TC resolution in iMod
and iInv. *)
Ltac iSolveSideCondition :=
31
  split_and?; try solve [ fast_done | solve_ndisj ].
32

33
34
35
36
37
38
39
(** Used for printing [string]s and [ident]s. *)
Ltac pretty_ident H :=
  lazymatch H with
  | INamed ?H => H
  | ?H => H
  end.

40
41
42
43
44
45
46
47
(** * Misc *)

Ltac iMissingHyps Hs :=
  let Δ :=
    lazymatch goal with
    | |- envs_entails ?Δ _ => Δ
    | |- context[ envs_split _ _ ?Δ ] => Δ
    end in
48
  let Hhyps := pm_eval (envs_dom Δ) in
49
50
51
52
  eval vm_compute in (list_difference Hs Hhyps).

Ltac iTypeOf H :=
  let Δ := match goal with |- envs_entails ?Δ _ => Δ end in
53
  pm_eval (envs_lookup H Δ).
54
55
56
57
58
59
60
61
62
63
64

Tactic Notation "iMatchHyp" tactic1(tac) :=
  match goal with
  | |- context[ environments.Esnoc _ ?x ?P ] => tac x P
  end.

(** * Start a proof *)
Tactic Notation "iStartProof" :=
  lazymatch goal with
  | |- envs_entails _ _ => idtac
  | |- ?φ => notypeclasses refine (as_emp_valid_2 φ _ _);
65
               [iSolveTC || fail "iStartProof: not a BI assertion"
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
               |apply tac_adequate]
  end.

(* Same as above, with 2 differences :
   - We can specify a BI in which we want the proof to be done
   - If the goal starts with a let or a ∀, they are automatically
     introduced. *)
Tactic Notation "iStartProof" uconstr(PROP) :=
  lazymatch goal with
  | |- @envs_entails ?PROP' _ _ =>
    (* This cannot be shared with the other [iStartProof], because
    type_term has a non-negligeable performance impact. *)
    let x := type_term (eq_refl : @eq Type PROP PROP') in idtac

  (* We eta-expand [as_emp_valid_2], in order to make sure that
     [iStartProof PROP] works even if [PROP] is the carrier type. In
     this case, typing this expression will end up unifying PROP with
     [bi_car _], and hence trigger the canonical structures mechanism
     to find the corresponding bi. *)
  | |- ?φ => notypeclasses refine ((λ P : PROP, @as_emp_valid_2 φ _ P) _ _ _);
86
               [iSolveTC || fail "iStartProof: not a BI assertion"
87
88
89
90
91
92
93
94
95
96
97
98
               |apply tac_adequate]
  end.

(** * Generate a fresh identifier *)
(* Tactic Notation tactics cannot return terms *)
Ltac iFresh :=
  (* We need to increment the environment counter using [tac_fresh].
     But because [iFresh] returns a value, we have to let bind
     [tac_fresh] wrapped under a match to force evaluation of this
     side-effect. See https://stackoverflow.com/a/46178884 *)
  let do_incr :=
      lazymatch goal with
99
      | _ => iStartProof; eapply tac_fresh; first by (pm_reflexivity)
100
101
102
      end in
  lazymatch goal with
  |- envs_entails ?Δ _ =>
103
    let n := pm_eval (env_counter Δ) in
104
105
106
107
108
109
110
111
112
113
114
115
116
    constr:(IAnon n)
  end.

(** * Simplification *)
Tactic Notation "iEval" tactic(t) :=
  iStartProof;
  eapply tac_eval;
    [let x := fresh in intros x; t; unfold x; reflexivity
    |].

Tactic Notation "iEval" tactic(t) "in" constr(H) :=
  iStartProof;
  eapply tac_eval_in with _ H _ _ _;
117
    [pm_reflexivity || fail "iEval:" H "not found"
118
    |let x := fresh in intros x; t; unfold x; reflexivity
119
    |pm_reflexivity
120
121
    |].

Robbert Krebbers's avatar
Robbert Krebbers committed
122
123
Tactic Notation "iSimpl" := iEval (simpl).
Tactic Notation "iSimpl" "in" constr(H) := iEval (simpl) in H.
124
125
126
127
128
129

(* It would be nice to also have an `iSsrRewrite`, however, for this we need to
pass arguments to Ssreflect's `rewrite` like `/= foo /bar` in Ltac, see:

  https://sympa.inria.fr/sympa/arc/coq-club/2018-01/msg00000.html

Robbert Krebbers's avatar
Robbert Krebbers committed
130
131
PMP told me (= Robbert) in person that this is not possible with the current
Ltac, but it may be possible in Ltac2. *)
132
133
134
135

(** * Context manipulation *)
Tactic Notation "iRename" constr(H1) "into" constr(H2) :=
  eapply tac_rename with _ H1 H2 _ _; (* (i:=H1) (j:=H2) *)
136
137
138
139
140
141
    [pm_reflexivity ||
     let H1 := pretty_ident H1 in
     fail "iRename:" H1 "not found"
    |pm_reflexivity ||
     let H2 := pretty_ident H2 in
     fail "iRename:" H2 "not fresh"|].
142
143
144
145
146

Local Inductive esel_pat :=
  | ESelPure
  | ESelIdent : bool  ident  esel_pat.

Ralf Jung's avatar
Ralf Jung committed
147
Local Ltac iElaborateSelPat_go pat Δ Hs :=
148
149
150
151
  lazymatch pat with
  | [] => eval cbv in Hs
  | SelPure :: ?pat =>  iElaborateSelPat_go pat Δ (ESelPure :: Hs)
  | SelPersistent :: ?pat =>
152
153
    let Hs' := pm_eval (env_dom (env_intuitionistic Δ)) in
    let Δ' := pm_eval (envs_clear_persistent Δ) in
154
155
    iElaborateSelPat_go pat Δ' ((ESelIdent true <$> Hs') ++ Hs)
  | SelSpatial :: ?pat =>
156
157
    let Hs' := pm_eval (env_dom (env_spatial Δ)) in
    let Δ' := pm_eval (envs_clear_spatial Δ) in
158
159
    iElaborateSelPat_go pat Δ' ((ESelIdent false <$> Hs') ++ Hs)
  | SelIdent ?H :: ?pat =>
160
    lazymatch pm_eval (envs_lookup_delete false H Δ) with
161
    | Some (?p,_,?Δ') =>  iElaborateSelPat_go pat Δ' (ESelIdent p H :: Hs)
162
163
164
    | None =>
      let H := pretty_ident H in
      fail "iElaborateSelPat:" H "not found"
165
166
    end
  end.
167
168
169
Ltac iElaborateSelPat pat :=
  lazymatch goal with
  | |- envs_entails ?Δ _ =>
170
    let pat := sel_pat.parse pat in iElaborateSelPat_go pat Δ (@nil esel_pat)
171
172
173
174
  end.

Local Ltac iClearHyp H :=
  eapply tac_clear with _ H _ _; (* (i:=H) *)
175
176
177
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iClear:" H "not found"
178
    |pm_reduce; iSolveTC ||
179
     let H := pretty_ident H in
180
181
182
183
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iClear:" H ":" P "not affine and the goal not absorbing"
    |].

184
185
186
187
188
189
Local Ltac iClear_go Hs :=
  lazymatch Hs with
  | [] => idtac
  | ESelPure :: ?Hs => clear; iClear_go Hs
  | ESelIdent _ ?H :: ?Hs => iClearHyp H; iClear_go Hs
  end.
190
Tactic Notation "iClear" constr(Hs) :=
191
  iStartProof; let Hs := iElaborateSelPat Hs in iClear_go Hs.
192
193
194
195
196
197
198

Tactic Notation "iClear" "(" ident_list(xs) ")" constr(Hs) :=
  iClear Hs; clear xs.

(** * Assumptions *)
Tactic Notation "iExact" constr(H) :=
  eapply tac_assumption with _ H _ _; (* (i:=H) *)
199
    [pm_reflexivity ||
200
     let H := pretty_ident H in
201
     fail "iExact:" H "not found"
202
    |iSolveTC ||
203
     let H := pretty_ident H in
204
205
     let P := match goal with |- FromAssumption _ ?P _ => P end in
     fail "iExact:" H ":" P "does not match goal"
206
    |pm_reduce; iSolveTC ||
207
     let H := pretty_ident H in
208
209
210
211
212
213
214
215
216
     fail "iExact:" H "not absorbing and the remaining hypotheses not affine"].

Tactic Notation "iAssumptionCore" :=
  let rec find Γ i P :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?Q => first [unify P Q; unify i j|find Γ i P]
    end in
  match goal with
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
217
     first [is_evar i; fail 1 | pm_reflexivity]
218
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
219
     is_evar i; first [find Γp i P | find Γs i P]; pm_reflexivity
220
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
221
     first [is_evar i; fail 1 | pm_reflexivity]
222
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
223
     is_evar i; first [find Γp i P | find Γs i P]; pm_reflexivity
224
225
226
227
228
229
230
231
232
  end.

Tactic Notation "iAssumption" :=
  let Hass := fresh in
  let rec find p Γ Q :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?P => first
       [pose proof (_ : FromAssumption p P Q) as Hass;
        eapply (tac_assumption _ _ j p P);
233
          [pm_reflexivity
234
          |apply Hass
235
          |pm_reduce; iSolveTC ||
236
237
238
           fail 1 "iAssumption:" j "not absorbing and the remaining hypotheses not affine"]
       |assert (P = False%I) as Hass by reflexivity;
        apply (tac_false_destruct _ j p P);
239
          [pm_reflexivity
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
          |exact Hass]
       |find p Γ Q]
    end in
  lazymatch goal with
  | |- envs_entails (Envs ?Γp ?Γs _) ?Q =>
     first [find true Γp Q | find false Γs Q
           |fail "iAssumption:" Q "not found"]
  end.

(** * False *)
Tactic Notation "iExFalso" := apply tac_ex_falso.

(** * Making hypotheses persistent or pure *)
Local Tactic Notation "iPersistent" constr(H) :=
  eapply tac_persistent with _ H _ _ _; (* (i:=H) *)
255
256
257
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iPersistent:" H "not found"
258
    |iSolveTC ||
259
260
     let P := match goal with |- IntoPersistent _ ?P _ => P end in
     fail "iPersistent:" P "not persistent"
261
    |pm_reduce; iSolveTC ||
262
263
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iPersistent:" P "not affine and the goal not absorbing"
264
    |pm_reflexivity|].
265
266
267

Local Tactic Notation "iPure" constr(H) "as" simple_intropattern(pat) :=
  eapply tac_pure with _ H _ _ _; (* (i:=H1) *)
268
269
270
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iPure:" H "not found"
271
    |iSolveTC ||
272
273
     let P := match goal with |- IntoPure ?P _ => P end in
     fail "iPure:" P "not pure"
274
    |pm_reduce; iSolveTC ||
275
276
277
278
279
280
281
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iPure:" P "not affine and the goal not absorbing"
    |intros pat].

Tactic Notation "iEmpIntro" :=
  iStartProof;
  eapply tac_emp_intro;
282
    [pm_reduce; iSolveTC ||
283
284
285
286
287
     fail "iEmpIntro: spatial context contains non-affine hypotheses"].

Tactic Notation "iPureIntro" :=
  iStartProof;
  eapply tac_pure_intro;
288
    [pm_reflexivity
289
    |iSolveTC ||
290
291
292
293
294
295
     let P := match goal with |- FromPure _ ?P _ => P end in
     fail "iPureIntro:" P "not pure"
    |].

(** Framing *)
Local Ltac iFrameFinish :=
296
  pm_prettify;
297
298
299
300
301
302
303
304
305
  try match goal with
  | |- envs_entails _ True => by iPureIntro
  | |- envs_entails _ emp => iEmpIntro
  end.

Local Ltac iFramePure t :=
  iStartProof;
  let φ := type of t in
  eapply (tac_frame_pure _ _ _ _ t);
306
    [iSolveTC || fail "iFrame: cannot frame" φ
307
308
309
310
311
    |iFrameFinish].

Local Ltac iFrameHyp H :=
  iStartProof;
  eapply tac_frame with _ H _ _ _;
312
313
314
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iFrame:" H "not found"
315
    |iSolveTC ||
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
     let R := match goal with |- Frame _ ?R _ _ => R end in
     fail "iFrame: cannot frame" R
    |iFrameFinish].

Local Ltac iFrameAnyPure :=
  repeat match goal with H : _ |- _ => iFramePure H end.

Local Ltac iFrameAnyPersistent :=
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => repeat iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_intuitionistic Δ)) in go Hs
  end.

Local Ltac iFrameAnySpatial :=
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => try iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_spatial Δ)) in go Hs
  end.

Tactic Notation "iFrame" := iFrameAnySpatial.

Tactic Notation "iFrame" "(" constr(t1) ")" :=
  iFramePure t1.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" :=
  iFramePure t1; iFrame ( t2 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" :=
  iFramePure t1; iFrame ( t2 t3 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ).

364
365
366
367
368
369
370
371
372
Local Ltac iFrame_go Hs :=
  lazymatch Hs with
  | [] => idtac
  | SelPure :: ?Hs => iFrameAnyPure; iFrame_go Hs
  | SelPersistent :: ?Hs => iFrameAnyPersistent; iFrame_go Hs
  | SelSpatial :: ?Hs => iFrameAnySpatial; iFrame_go Hs
  | SelIdent ?H :: ?Hs => iFrameHyp H; iFrame_go Hs
  end.

373
Tactic Notation "iFrame" constr(Hs) :=
374
  let Hs := sel_pat.parse Hs in iFrame_go Hs.
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
Tactic Notation "iFrame" "(" constr(t1) ")" constr(Hs) :=
  iFramePure t1; iFrame Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")"
    constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ) Hs.

(** * Basic introduction tactics *)
Local Tactic Notation "iIntro" "(" simple_intropattern(x) ")" :=
  (* In the case the goal starts with an [let x := _ in _], we do not
     want to unfold x and start the proof mode. Instead, we want to
     use intros. So [iStartProof] has to be called only if [intros]
     fails *)
  intros x ||
    (iStartProof;
     lazymatch goal with
     | |- envs_entails _ _ =>
       eapply tac_forall_intro;
408
       [iSolveTC ||
409
410
              let P := match goal with |- FromForall ?P _ => P end in
              fail "iIntro: cannot turn" P "into a universal quantifier"
411
       |pm_prettify; intros x]
412
413
414
415
416
417
418
     end).

Local Tactic Notation "iIntro" constr(H) :=
  iStartProof;
  first
  [ (* (?Q → _) *)
    eapply tac_impl_intro with _ H _ _ _; (* (i:=H) *)
419
      [iSolveTC
420
      |pm_reduce; iSolveTC ||
421
422
423
       let P := lazymatch goal with |- Persistent ?P => P end in
       fail 1 "iIntro: introducing non-persistent" H ":" P
              "into non-empty spatial context"
424
425
426
      |pm_reflexivity ||
       let H := pretty_ident H in
       fail 1 "iIntro:" H "not fresh"
427
      |iSolveTC
428
429
430
      |]
  | (* (_ -∗ _) *)
    eapply tac_wand_intro with _ H _ _; (* (i:=H) *)
431
      [iSolveTC
432
433
434
      | pm_reflexivity ||
        let H := pretty_ident H in
        fail 1 "iIntro:" H "not fresh"
435
436
437
438
439
440
441
442
      |]
  | fail "iIntro: nothing to introduce" ].

Local Tactic Notation "iIntro" "#" constr(H) :=
  iStartProof;
  first
  [ (* (?P → _) *)
    eapply tac_impl_intro_persistent with _ H _ _ _; (* (i:=H) *)
443
444
      [iSolveTC
      |iSolveTC ||
445
446
       let P := match goal with |- IntoPersistent _ ?P _ => P end in
       fail 1 "iIntro:" P "not persistent"
447
448
449
      |pm_reflexivity ||
       let H := pretty_ident H in
       fail 1 "iIntro:" H "not fresh"
450
451
452
      |]
  | (* (?P -∗ _) *)
    eapply tac_wand_intro_persistent with _ H _ _ _; (* (i:=H) *)
453
454
      [ iSolveTC
      | iSolveTC ||
455
456
       let P := match goal with |- IntoPersistent _ ?P _ => P end in
       fail 1 "iIntro:" P "not persistent"
457
      |iSolveTC ||
458
459
       let P := match goal with |- TCOr (Affine ?P) _ => P end in
       fail 1 "iIntro:" P "not affine and the goal not absorbing"
460
461
462
      |pm_reflexivity ||
       let H := pretty_ident H in
       fail 1 "iIntro:" H "not fresh"
463
464
465
466
467
468
469
      |]
  | fail "iIntro: nothing to introduce" ].

Local Tactic Notation "iIntro" "_" :=
  first
  [ (* (?Q → _) *)
    iStartProof; eapply tac_impl_intro_drop;
470
    [ iSolveTC | ]
471
472
  | (* (_ -∗ _) *)
    iStartProof; eapply tac_wand_intro_drop;
473
474
      [ iSolveTC
      | iSolveTC ||
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
       let P := match goal with |- TCOr (Affine ?P) _ => P end in
       fail 1 "iIntro:" P "not affine and the goal not absorbing"
      |]
  | (* (∀ _, _) *) iIntro (_)
  | fail 1 "iIntro: nothing to introduce" ].

Local Tactic Notation "iIntroForall" :=
  lazymatch goal with
  | |-  _, ?P => fail (* actually an →, this is handled by iIntro below *)
  | |-  _, _ => intro
  | |- let _ := _ in _ => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ ( x : _, _) => let x' := fresh x in iIntro (x')
    end
  end.
Local Tactic Notation "iIntro" :=
  lazymatch goal with
  | |- _  ?P => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ (_ - _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    | |- envs_entails _ (_  _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    end
  end.

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
(** * Revert *)
Local Tactic Notation "iForallRevert" ident(x) :=
  let err x :=
    intros x;
    iMatchHyp (fun H P =>
      lazymatch P with
      | context [x] => fail 2 "iRevert:" x "is used in hypothesis" H
      end) in
  iStartProof;
  let A := type of x in
  lazymatch type of A with
  | Prop => revert x; first [apply tac_pure_revert|err x]
  | _ => revert x; first [apply tac_forall_revert|err x]
  end.

Tactic Notation "iRevert" constr(Hs) :=
  let rec go Hs :=
    lazymatch Hs with
    | [] => idtac
    | ESelPure :: ?Hs =>
       repeat match goal with x : _ |- _ => revert x end;
       go Hs
    | ESelIdent _ ?H :: ?Hs =>
       eapply tac_revert with _ H _ _; (* (i:=H2) *)
         [pm_reflexivity ||
          let H := pretty_ident H in
          fail "iRevert:" H "not found"
         |pm_reduce; go Hs]
    end in
  iStartProof; let Hs := iElaborateSelPat Hs in go Hs.

Tactic Notation "iRevert" "(" ident(x1) ")" :=
  iForallRevert x1.
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" :=
  iForallRevert x2; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" :=
  iForallRevert x3; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")" :=
  iForallRevert x4; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" :=
  iForallRevert x5; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" :=
  iForallRevert x6; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" :=
  iForallRevert x7; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" :=
  iForallRevert x8; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).

Tactic Notation "iRevert" "(" ident(x1) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")"
    constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 ).

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
(** * Specialize *)
Record iTrm {X As S} :=
  ITrm { itrm : X ; itrm_vars : hlist As ; itrm_hyps : S }.
Arguments ITrm {_ _ _} _ _ _.

Notation "( H $! x1 .. xn )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) "") (at level 0, x1, xn at level 9).
Notation "( H $! x1 .. xn 'with' pat )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) pat) (at level 0, x1, xn at level 9).
Notation "( H 'with' pat )" := (ITrm H hnil pat) (at level 0).

(** There is some hacky stuff going on here: because of Coq bug #6583, unresolved
type classes in the arguments `xs` are resolved at arbitrary moments. Tactics
like `apply`, `split` and `eexists` wrongly trigger type class search to resolve
these holes. To avoid TC being triggered too eagerly, this tactic uses `refine`
at most places instead of `apply`. *)
593
Local Ltac iSpecializeArgs_go H xs :=
594
595
596
597
    lazymatch xs with
    | hnil => idtac
    | hcons ?x ?xs =>
       notypeclasses refine (tac_forall_specialize _ _ H _ _ _ _ _ _ _);
598
599
600
         [pm_reflexivity ||
          let H := pretty_ident H in
          fail "iSpecialize:" H "not found"
601
602
603
604
605
606
         |iSolveTC ||
          let P := match goal with |- IntoForall ?P _ => P end in
          fail "iSpecialize: cannot instantiate" P "with" x
         |lazymatch goal with (* Force [A] in [ex_intro] to deal with coercions. *)
          | |-  _ : ?A, _ =>
            notypeclasses refine (@ex_intro A _ x (conj _ _))
607
608
609
610
          end; [shelve..|pm_reflexivity|iSpecializeArgs_go H xs]]
    end.
Local Tactic Notation "iSpecializeArgs" constr(H) open_constr(xs) :=
  iSpecializeArgs_go H xs.
611

612
Ltac iSpecializePat_go H1 pats :=
613
614
615
616
617
618
619
620
621
622
623
624
  let solve_to_wand H1 :=
    iSolveTC ||
    let P := match goal with |- IntoWand _ _ ?P _ _ => P end in
    fail "iSpecialize:" P "not an implication/wand" in
  let solve_done d :=
    lazymatch d with
    | true =>
       done ||
       let Q := match goal with |- envs_entails _ ?Q => Q end in
       fail "iSpecialize: cannot solve" Q "using done"
    | false => idtac
    end in
625
  lazymatch pats with
626
627
628
    | [] => idtac
    | SForall :: ?pats =>
       idtac "[IPM] The * specialization pattern is deprecated because it is applied implicitly.";
629
       iSpecializePat_go H1 pats
630
631
    | SIdent ?H2 :: ?pats =>
       notypeclasses refine (tac_specialize _ _ _ H2 _ H1 _ _ _ _ _ _ _ _ _ _);
632
633
634
635
636
637
         [pm_reflexivity ||
          let H2 := pretty_ident H2 in
          fail "iSpecialize:" H2 "not found"
         |pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
638
639
640
641
         |iSolveTC ||
          let P := match goal with |- IntoWand _ _ ?P ?Q _ => P end in
          let Q := match goal with |- IntoWand _ _ ?P ?Q _ => Q end in
          fail "iSpecialize: cannot instantiate" P "with" Q
642
         |pm_reflexivity|iSpecializePat_go H1 pats]
643
644
    | SPureGoal ?d :: ?pats =>
       notypeclasses refine (tac_specialize_assert_pure _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
645
646
647
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
648
649
650
651
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- FromPure _ ?Q _ => Q end in
          fail "iSpecialize:" Q "not pure"
652
         |pm_reflexivity
653
         |solve_done d (*goal*)
654
         |iSpecializePat_go H1 pats]
655
656
    | SGoal (SpecGoal GPersistent false ?Hs_frame [] ?d) :: ?pats =>
       notypeclasses refine (tac_specialize_assert_persistent _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
657
658
659
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
660
661
662
663
664
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
         |iSolveTC
665
         |pm_reflexivity
666
         |iFrame Hs_frame; solve_done d (*goal*)
667
         |iSpecializePat_go H1 pats]
668
669
670
671
672
    | SGoal (SpecGoal GPersistent _ _ _ _) :: ?pats =>
       fail "iSpecialize: cannot select hypotheses for persistent premise"
    | SGoal (SpecGoal ?m ?lr ?Hs_frame ?Hs ?d) :: ?pats =>
       let Hs' := eval cbv in (if lr then Hs else Hs_frame ++ Hs) in
       notypeclasses refine (tac_specialize_assert _ _ _ _ H1 _ lr Hs' _ _ _ _ _ _ _ _ _ _ _);
673
674
675
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
676
677
         |solve_to_wand H1
         |lazymatch m with
678
          | GSpatial => class_apply add_modal_id
679
680
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
681
         |pm_reflexivity ||
682
683
684
          let Hs' := iMissingHyps Hs' in
          fail "iSpecialize: hypotheses" Hs' "not found"
         |iFrame Hs_frame; solve_done d (*goal*)
685
         |iSpecializePat_go H1 pats]
686
687
    | SAutoFrame GPersistent :: ?pats =>
       notypeclasses refine (tac_specialize_assert_persistent _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
688
689
690
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
691
692
693
694
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
695
         |pm_reflexivity
696
         |solve [iFrame "∗ #"]
697
         |iSpecializePat_go H1 pats]
698
699
    | SAutoFrame ?m :: ?pats =>
       notypeclasses refine (tac_specialize_frame _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
700
701
702
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
703
704
         |solve_to_wand H1
         |lazymatch m with
Robbert Krebbers's avatar
Robbert Krebbers committed
705
          | GSpatial => class_apply add_modal_id
706
707
708
709
710
711
712
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
         |first
            [notypeclasses refine (tac_unlock_emp _ _ _)
            |notypeclasses refine (tac_unlock_True _ _ _)
            |iFrame "∗ #"; notypeclasses refine (tac_unlock _ _ _)
            |fail "iSpecialize: premise cannot be solved by framing"]
713
714
715
716
717
         |exact eq_refl]; iIntro H1; iSpecializePat_go H1 pats
    end.

Local Tactic Notation "iSpecializePat" open_constr(H) constr(pat) :=
  let pats := spec_pat.parse pat in iSpecializePat_go H pats.
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743

(* The argument [p] denotes whether the conclusion of the specialized term is
persistent. If so, one can use all spatial hypotheses for both proving the
premises and the remaning goal. The argument [p] can either be a Boolean or an
introduction pattern, which will be coerced into [true] when it solely contains
`#` or `%` patterns at the top-level.

In case the specialization pattern in [t] states that the modality of the goal
should be kept for one of the premises (i.e. [>[H1 .. Hn]] is used) then [p]
defaults to [false] (i.e. spatial hypotheses are not preserved). *)
Tactic Notation "iSpecializeCore" open_constr(H)
    "with" open_constr(xs) open_constr(pat) "as" constr(p) :=
  let p := intro_pat_persistent p in
  let pat := spec_pat.parse pat in
  let H :=
    lazymatch type of H with
    | string => constr:(INamed H)
    | _ => H
    end in
  iSpecializeArgs H xs; [..|
  lazymatch type of H with
  | ident =>
    (* The lemma [tac_specialize_persistent_helper] allows one to use all
    spatial hypotheses for both proving the premises of the lemma we
    specialize as well as those of the remaining goal. We can only use it when
    the result of the specialization is persistent, and no modality is
Robbert Krebbers's avatar
Robbert Krebbers committed
744
745
746
    eliminated. We do not use [tac_specialize_persistent_helper] in the case
    only universal quantifiers and no implications or wands are instantiated
    (i.e [pat = []]) because it is a.) not needed, and b.) more efficient. *)
747
748
749
750
751
752
    let pat := spec_pat.parse pat in
    lazymatch eval compute in
      (p && bool_decide (pat  []) && negb (existsb spec_pat_modal pat)) with
    | true =>
       (* FIXME: do something reasonable when the BI is not affine *)
       notypeclasses refine (tac_specialize_persistent_helper _ _ H _ _ _ _ _ _ _ _ _ _ _);
753
754
755
         [pm_reflexivity ||
          let H := pretty_ident H in
          fail "iSpecialize:" H "not found"
756
757
         |iSpecializePat H pat;
           [..
Ralf Jung's avatar
Ralf Jung committed
758
           |notypeclasses refine (tac_specialize_persistent_helper_done _ H _ _ _);
759
            pm_reflexivity]
760
761
762
         |iSolveTC ||
          let Q := match goal with |- IntoPersistent _ ?Q _ => Q end in
          fail "iSpecialize:" Q "not persistent"
763
         |pm_reduce; iSolveTC ||
764
765
          let Q := match goal with |- TCAnd _ (Affine ?Q) => Q end in
          fail "iSpecialize:" Q "not affine"
766
         |pm_reflexivity
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
         |(* goal *)]
    | false => iSpecializePat H pat
    end
  | _ => fail "iSpecialize:" H "should be a hypothesis, use iPoseProof instead"
  end].

Tactic Notation "iSpecializeCore" open_constr(t) "as" constr(p) :=
  lazymatch type of t with
  | string => iSpecializeCore t with hnil "" as p
  | ident => iSpecializeCore t with hnil "" as p
  | _ =>
    lazymatch t with
    | ITrm ?H ?xs ?pat => iSpecializeCore H with xs pat as p
    | _ => fail "iSpecialize:" t "should be a proof mode term"
    end
  end.

Tactic Notation "iSpecialize" open_constr(t) :=
  iSpecializeCore t as false.
Tactic Notation "iSpecialize" open_constr(t) "as" "#" :=
  iSpecializeCore t as true.

(** * Pose proof *)
(* The tactic [iIntoEmpValid] tactic solves a goal [bi_emp_valid Q]. The
argument [t] must be a Coq term whose type is of the following shape:

[∀ (x_1 : A_1) .. (x_n : A_n), φ]

and so that we have an instance `AsValid φ Q`.

Examples of such [φ]s are

- [bi_emp_valid P], in which case [Q] should be [P]
- [P1 ⊢ P2], in which case [Q] should be [P1 -∗ P2]
- [P1 ⊣⊢ P2], in which case [Q] should be [P1 ↔ P2]

The tactic instantiates each dependent argument [x_i] with an evar and generates
a goal [R] for each non-dependent argument [x_i : R].  For example, if the
original goal was [Q] and [t] has type [∀ x, P x → Q], then it generates an evar
[?x] for [x] and a subgoal [P ?x]. *)
807
808
809
810
811
812
813
814
815
816
817
818
819
Local Ltac iIntoEmpValid t :=
  let go_specialize t tT :=
    lazymatch tT with                (* We do not use hnf of tT, because, if
                                        entailment is not opaque, then it would
                                        unfold it. *)
    | ?P  ?Q => let H := fresh in assert P as H; [|iIntoEmpValid uconstr:(t H); clear H]
    |  _ : ?T, _ =>
      (* Put [T] inside an [id] to avoid TC inference from being invoked. *)
      (* This is a workarround for Coq bug #6583. *)
      let e := fresh in evar (e:id T);
      let e' := eval unfold e in e in clear e; iIntoEmpValid (t e')
    end
  in
820
821
822
823
824
825
826
827
828
829
830
831
832
833
    (* We try two reduction tactics for the type of t before trying to
       specialize it. We first try the head normal form in order to
       unfold all the definition that could hide an entailment.  Then,
       we try the much weaker [eval cbv zeta], because entailment is
       not necessarilly opaque, and could be unfolded by [hnf].

       However, for calling type class search, we only use [cbv zeta]
       in order to make sure we do not unfold [bi_emp_valid]. *)
    let tT := type of t in
    first
      [ let tT' := eval hnf in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in
        notypeclasses refine (as_emp_valid_1 tT _ _);
834
          [iSolveTC || fail 1 "iPoseProof: not a BI assertion"
835
          |exact t]].
836

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
Local Ltac iPoseProofCore_go Htmp t goal_tac :=
  lazymatch type of t with
  | ident =>
    eapply tac_pose_proof_hyp with _ _ t _ Htmp _;
    [pm_reflexivity ||
     let t := pretty_ident t in
     fail "iPoseProof:" t "not found"
    |pm_reflexivity ||
     let Htmp := pretty_ident Htmp in
     fail "iPoseProof:" Htmp "not fresh"
    |goal_tac ()]
  | _ =>
    eapply tac_pose_proof with _ Htmp _; (* (j:=H) *)
    [iIntoEmpValid t
    |pm_reflexivity ||
     let Htmp := pretty_ident Htmp in
     fail "iPoseProof:" Htmp "not fresh"
    |goal_tac ()]
  end;
  try iSolveTC.
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

(** The tactic [iPoseProofCore lem as p lazy_tc tac] inserts the resource
described by [lem] into the context. The tactic takes a continuation [tac] as
its argument, which is called with a temporary fresh name [H] that refers to
the hypothesis containing [lem].

There are a couple of additional arguments:

- The argument [p] is like that of [iSpecialize]. It is a Boolean that denotes
  whether the conclusion of the specialized term [lem] is persistent.
- The argument [lazy_tc] denotes whether type class inference on the premises
  of [lem] should be performed before (if [lazy_tc = false]) or after, i.e.
  lazily (if [lazy_tc = true]) [tac H] is called.

Both variants of [lazy_tc] are used in other tactics that build on top of
[iPoseProofCore]:

- The tactic [iApply] uses lazy type class inference (i.e. [lazy_tc = true]),
  so that evars can first be matched against the goal before being solved by
  type class inference.
- The tactic [iDestruct] uses eager type class inference (i.e. [lazy_tc = false])
  because it may be not possible to eliminate logical connectives before all
  type class constraints have been resolved. *)
880
881
882
883
884
885
886
887
888
889
890
891
Tactic Notation "iPoseProofCore" open_constr(lem)
    "as" constr(p) constr(lazy_tc) tactic(tac) :=
  iStartProof;
  let Htmp := iFresh in
  let t := lazymatch lem with ITrm ?t ?xs ?pat => t | _ => lem end in
  let t := lazymatch type of t with string => constr:(INamed t) | _ => t end in
  let spec_tac _ :=
    lazymatch lem with
    | ITrm ?t ?xs ?pat => iSpecializeCore (ITrm Htmp xs pat) as p
    | _ => idtac
    end in
  lazymatch eval compute in lazy_tc with
892
893
  | true => iPoseProofCore_go Htmp t ltac:(fun _ => spec_tac (); [..| tac Htmp ])
  | false => iPoseProofCore_go Htmp t spec_tac; [..| tac Htmp ]
894
895
  end.

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
(** [iApply lem] takes an argument [lem : P₁ -∗ .. -∗ Pₙ -∗ Q] (after the
specialization patterns in [lem] have been executed), where [Q] should match
the goal, and generates new goals [P1] ... [Pₙ]. Depending on the number of
premises [n], the tactic will have the following behavior:

- If [n = 0], it will immediately solve the goal (i.e. it will not generate any
  subgoals). When working in a general BI, this means that the tactic can fail
  in case there are non-affine spatial hypotheses in the context prior to using
  the [iApply] tactic. Note that if [n = 0], the tactic behaves exactly like
  [iExact lem].
- If [n > 0] it will generate a goals [P₁] ... [Pₙ]. All spatial hypotheses
  will be transferred to the last goal, i.e. [Pₙ]; the other goals will receive
  no spatial hypotheses. If you want to control more precisely how the spatial
  hypotheses are subdivided, you should add additional introduction patterns to
  [lem]. *)

(* The helper [iApplyHypExact] takes care of the [n=0] case. It fails with level
0 if we should proceed to the [n > 0] case, and with level 1 if there is an
actual error. *)
Local Ltac iApplyHypExact H :=
  first
    [eapply tac_assumption with _ H _ _; (* (i:=H) *)
       [pm_reflexivity || fail 1
       |iSolveTC || fail 1
       |pm_reduce; iSolveTC]
    |lazymatch iTypeOf H with
     | Some (_,?Q) =>
        fail 2 "iApply:" Q "not absorbing and the remaining hypotheses not affine"
     end].
Local Ltac iApplyHypLoop H :=
  first
927
    [eapply tac_apply with _ H _ _ _;
928
      [pm_reflexivity
929
      |iSolveTC
930
931
932
933
934
935
936
937
938
939
      |pm_prettify (* reduce redexes created by instantiation *)]
    |iSpecializePat H "[]"; last iApplyHypLoop H].

Tactic Notation "iApplyHyp" constr(H) :=
  first
    [iApplyHypExact H
    |iApplyHypLoop H
    |lazymatch iTypeOf H with
     | Some (_,?Q) => fail 1 "iApply: cannot apply" Q
     end].
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961

Tactic Notation "iApply" open_constr(lem) :=
  iPoseProofCore lem as false true (fun H => iApplyHyp H).

(** * Disjunction *)
Tactic Notation "iLeft" :=
  iStartProof;
  eapply tac_or_l;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iLeft:" P "not a disjunction"
    |].
Tactic Notation "iRight" :=
  iStartProof;
  eapply tac_or_r;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iRight:" P "not a disjunction"
    |].

Local Tactic Notation "iOrDestruct" constr(H) "as" constr(H1) constr(H2) :=
  eapply tac_or_destruct with _ _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
962
963
964
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iOrDestruct:" H "not found"
965
966
967
    |iSolveTC ||
     let P := match goal with |- IntoOr ?P _ _ => P end in
     fail "iOrDestruct: cannot destruct" P
968
969
970
971
972
973
    |pm_reflexivity ||
     let H1 := pretty_ident H1 in
     fail "iOrDestruct:" H1 "not fresh"
    |pm_reflexivity ||
     let H2 := pretty_ident H2 in
     fail "iOrDestruct:" H2 "not fresh"
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
    | |].

(** * Conjunction and separating conjunction *)
Tactic Notation "iSplit" :=
  iStartProof;
  eapply tac_and_split;
    [iSolveTC ||
     let P := match goal with |- FromAnd ?P _ _ => P end in
     fail "iSplit:" P "not a conjunction"| |].

Tactic Notation "iSplitL" constr(Hs) :=
  iStartProof;
  let Hs := words Hs in
  let Hs := eval vm_compute in (INamed <$> Hs) in
  eapply tac_sep_split with _ _ Left Hs _ _; (* (js:=Hs) *)
    [iSolveTC ||
     let P := match goal with |- FromSep _ ?P _ _ => P end in
     fail "iSplitL:" P "not a separating conjunction"
992
    |pm_reflexivity ||
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
     let Hs := iMissingHyps Hs in
     fail "iSplitL: hypotheses" Hs "not found"
    | |].

Tactic Notation "iSplitR" constr(Hs) :=
  iStartProof;
  let Hs := words Hs in
  let Hs := eval vm_compute in (INamed <$> Hs) in
  eapply tac_sep_split with _ _ Right Hs _ _; (* (js:=Hs) *)
    [iSolveTC ||
     let P := match goal with |- FromSep _ ?P _ _ => P end in
     fail "iSplitR:" P "not a separating conjunction"
1005
    |pm_reflexivity ||
1006
1007
1008
1009
1010
1011
1012
1013
1014
     let Hs := iMissingHyps Hs in
     fail "iSplitR: hypotheses" Hs "not found"
    | |].

Tactic Notation "iSplitL" := iSplitR "".
Tactic Notation "iSplitR" := iSplitL "".

Local Tactic Notation "iAndDestruct" constr(H) "as" constr(H1) constr(H2) :=
  eapply tac_and_destruct with _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
1015
1016
1017
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iAndDestruct:" H "not found"
1018
    |pm_reduce; iSolveTC ||
1019
1020
1021
1022
1023
1024
     let P :=
       lazymatch goal with
       | |- IntoSep ?P _ _ => P
       | |- IntoAnd _ ?P _ _ => P
       end in
     fail "iAndDestruct: cannot destruct" P
1025
1026
1027
1028
    |pm_reflexivity ||
     let H1 := pretty_ident H1 in
     let H2 := pretty_ident H2 in
     fail "iAndDestruct:" H1 "or" H2 " not fresh"|].
1029
1030
1031

Local Tactic Notation "iAndDestructChoice" constr(H) "as" constr(d) constr(H') :=
  eapply tac_and_destruct_choice with _ H _ d H' _ _ _;
1032
1033
    [pm_reflexivity || fail "iAndDestructChoice:" H "not found"
    |pm_reduce; iSolveTC ||
1034
1035
     let P := match goal with |- TCOr (IntoAnd _ ?P _ _) _ => P end in
     fail "iAndDestructChoice: cannot destruct" P
1036
1037
1038
    |pm_reflexivity ||
     let H' := pretty_ident H' in
     fail "iAndDestructChoice:" H' " not fresh"|].
1039
1040
1041
1042
1043
1044
1045
1046

(** * Existential *)
Tactic Notation "iExists" uconstr(x1) :=
  iStartProof;
  eapply tac_exist;
    [iSolveTC ||
     let P := match goal with |- FromExist ?P _ => P end in
     fail "iExists:" P "not an existential"
1047
    |pm_prettify; eexists x1].
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) :=
  iExists x1; iExists x2.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) :=
  iExists x1; iExists x2, x3.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) :=
  iExists x1; iExists x2, x3, x4.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) :=
  iExists x1; iExists x2, x3, x4, x5.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) :=
  iExists x1; iExists x2, x3, x4, x5, x6.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) "," uconstr(x7) :=
  iExists x1; iExists x2, x3, x4, x5, x6, x7.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) "," uconstr(x7) ","
    uconstr(x8) :=
  iExists x1; iExists x2, x3, x4, x5, x6, x7, x8.

Local Tactic Notation "iExistDestruct" constr(H)
    "as" simple_intropattern(x) constr(Hx) :=
  eapply tac_exist_destruct with H _ Hx _ _; (* (i:=H) (j:=Hx) *)
1073
1074
1075
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iExistDestruct:" H "not found"
1076
1077
1078
1079
1080
    |iSolveTC ||
     let P := match goal with |- IntoExist ?P _ => P end in
     fail "iExistDestruct: cannot destruct" P|];
  let y := fresh in
  intros y; eexists; split;
1081
1082
1083
    [pm_reflexivity ||
     let Hx := pretty_ident Hx in
     fail "iExistDestruct:" Hx "not fresh"
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
    |revert y; intros x].

(** * Modality introduction *)
Tactic Notation "iModIntro" uconstr(sel) :=
  iStartProof;
  notypeclasses refine (tac_modal_intro _ sel _ _ _ _ _ _ _ _ _ _ _ _ _);
    [iSolveTC ||
     fail "iModIntro: the goal is not a modality"
    |iSolveTC ||
     let s := lazymatch goal with |- IntoModalPersistentEnv _ _ _ ?s => s end in
     lazymatch eval hnf in s with
     | MIEnvForall ?C => fail "iModIntro: persistent context does not satisfy" C
     | MIEnvIsEmpty => fail "iModIntro: persistent context is non-empty"
     end
    |iSolveTC ||
Robbert Krebbers's avatar
Robbert Krebbers committed
1099
     let s := lazymatch goal with |- IntoModalSpatialEnv _ _ _ ?s _ => s end in
1100
1101
1102
1103
     lazymatch eval hnf in s with
     | MIEnvForall ?C => fail "iModIntro: spatial context does not satisfy" C
     | MIEnvIsEmpty => fail "iModIntro: spatial context is non-empty"
     end
1104
    |pm_reduce; iSolveTC ||
1105
     fail "iModIntro: cannot filter spatial context when goal is not absorbing"
1106
1107
    |pm_prettify (* reduce redexes created by instantiation *)
    ].
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
Tactic Notation "iModIntro" := iModIntro _.
Tactic Notation "iAlways" := iModIntro.

(** * Later *)
Tactic Notation "iNext" open_constr(n) := iModIntro (^n _)%I.
Tactic Notation "iNext" := iModIntro (^_ _)%I.

(** * Update modality *)
Tactic Notation "iModCore" constr(H) :=
  eapply tac_modal_elim with _ H _ _ _ _ _ _;
1118
    [pm_reflexivity || fail "iMod:" H "not found"
1119
1120
1121
1122
    |iSolveTC ||
     let P := match goal with |- ElimModal _ _ _ ?P _ _ _ => P end in
     let Q := match goal with |- ElimModal _ _ _ _ _ ?Q _ => Q end in
     fail "iMod: cannot eliminate modality " P "in" Q
1123
    |iSolveSideCondition
1124
    |pm_reflexivity|].
1125
1126

(** * Basic destruct tactic *)
1127
Local Ltac iDestructHypGo Hz pat :=
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
    lazymatch pat with
    | IAnom =>
       lazymatch Hz with
       | IAnon _ => idtac
       | INamed ?Hz => let Hz' := iFresh in iRename Hz into Hz'
       end
    | IDrop => iClearHyp Hz
    | IFrame => iFrameHyp Hz
    | IIdent ?y => iRename Hz into y
    | IList [[]] => iExFalso; iExact Hz
1138
1139
    | IList [[?pat1; IDrop]] => iAndDestructChoice Hz as Left Hz; iDestructHypGo Hz pat1
    | IList [[IDrop; ?pat2]] => iAndDestructChoice Hz as Right Hz; iDestructHypGo Hz pat2
1140
    | IList [[?pat1; ?pat2]] =>
1141
1142
       let Hy := iFresh in iAndDestruct Hz as Hz Hy; iDestructHypGo Hz pat1; iDestructHypGo Hy pat2
    | IList [[?pat1];[?pat2]] => iOrDestruct Hz as Hz Hz; [iDestructHypGo Hz pat1|iDestructHypGo Hz pat2]
1143
1144
1145
    | IPureElim => iPure Hz as ?
    | IRewrite Right => iPure Hz as ->
    | IRewrite Left => iPure Hz as <-
1146
1147
    | IAlwaysElim ?pat => iPersistent Hz; iDestructHypGo Hz pat
    | IModalElim ?pat => iModCore Hz; iDestructHypGo Hz pat
1148
    | _ => fail "iDestruct:" pat "invalid"
1149
    end.
1150
Local Ltac iDestructHypFindPat Hgo pat found pats :=
1151
1152
1153
    lazymatch pats with
    | [] =>
      lazymatch found with
1154
      | true => pm_prettify (* post-tactic prettification *)
1155
1156
      | false => fail "iDestruct:" pat "should contain exactly one proper introduction pattern"
      end
1157
1158
1159
    | ISimpl :: ?pats => simpl; iDestructHypFindPat Hgo pat found pats
    | IClear ?H :: ?pats => iClear H; iDestructHypFindPat Hgo pat found pats
    | IClearFrame ?H :: ?pats => iFrame H; iDestructHypFindPat Hgo pat found pats
1160
1161
    | ?pat :: ?pats =>
       lazymatch found with
1162
       | false => iDestructHypGo Hgo pat; iDestructHypFindPat Hgo pat true pats
1163
1164
       | true => fail "iDestruct:" pat "should contain exactly one proper introduction pattern"
       end
1165
1166
    end.
Tactic Notation "iDestructHyp" constr(H) "as" constr(pat) :=
1167
  let pats := intro_pat.parse pat in
1168
  iDestructHypFindPat H pat false pats.
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1) ")"
    constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as @ pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) ")" constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 ) pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) ")" constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 ) pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4) ")"
    constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 ) pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) ")" constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 x5 ) pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) ")" constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 x5 x6 ) pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7) ")"
    constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 x5 x6 x7 ) pat.
Tactic Notation "iDestructHyp" constr(H) "as" "(" simple_intropattern(x1)
    simple_intropattern(x2) simple_intropattern(x3) simple_intropattern(x4)
    simple_intropattern(x5) simple_intropattern(x6) simple_intropattern(x7)
    simple_intropattern(x8) ")" constr(pat) :=
  iExistDestruct H as x1 H; iDestructHyp H as ( x2 x3 x4 x5 x6 x7