upred_big_op.v 9.49 KB
Newer Older
1
From iris.algebra Require Export upred list.
2
From iris.prelude Require Import gmap fin_collections.
3
Import uPred.
4

5
6
(** * Big ops over lists *)
(* These are the basic building blocks for other big ops *)
7
8
9
10
11
12
13
14
Fixpoint uPred_big_and {M} (Ps : list (uPred M)) : uPred M:=
  match Ps with [] => True | P :: Ps => P  uPred_big_and Ps end%I.
Instance: Params (@uPred_big_and) 1.
Notation "'Π∧' Ps" := (uPred_big_and Ps) (at level 20) : uPred_scope.
Fixpoint uPred_big_sep {M} (Ps : list (uPred M)) : uPred M :=
  match Ps with [] => True | P :: Ps => P  uPred_big_sep Ps end%I.
Instance: Params (@uPred_big_sep) 1.
Notation "'Π★' Ps" := (uPred_big_sep Ps) (at level 20) : uPred_scope.
15

16
17
(** * Other big ops *)
(** We use a type class to obtain overloaded notations *)
18
Definition uPred_big_sepM {M} `{Countable K} {A}
19
20
    (m : gmap K A) (Φ : K  A  uPred M) : uPred M :=
  uPred_big_sep (curry Φ <$> map_to_list m).
21
Instance: Params (@uPred_big_sepM) 6.
22
23
Notation "'Π★{map' m } Φ" := (uPred_big_sepM m Φ)
  (at level 20, m at level 10, format "Π★{map  m }  Φ") : uPred_scope.
24

25
Definition uPred_big_sepS {M} `{Countable A}
26
  (X : gset A) (Φ : A  uPred M) : uPred M := uPred_big_sep (Φ <$> elements X).
27
Instance: Params (@uPred_big_sepS) 5.
28
29
Notation "'Π★{set' X } Φ" := (uPred_big_sepS X Φ)
  (at level 20, X at level 10, format "Π★{set  X }  Φ") : uPred_scope.
30
31

(** * Always stability for lists *)
32
Class PersistentL {M} (Ps : list (uPred M)) :=
33
  persistentL : Forall PersistentP Ps.
34
Arguments persistentL {_} _ {_}.
35
36
37
38
39
40
41

Section big_op.
Context {M : cmraT}.
Implicit Types Ps Qs : list (uPred M).
Implicit Types A : Type.

(* Big ops *)
42
Global Instance big_and_proper : Proper (() ==> ()) (@uPred_big_and M).
43
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
44
Global Instance big_sep_proper : Proper (() ==> ()) (@uPred_big_sep M).
45
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
46

47
Global Instance big_and_ne n : Proper (dist n ==> dist n) (@uPred_big_and M).
48
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
49
Global Instance big_sep_ne n : Proper (dist n ==> dist n) (@uPred_big_sep M).
50
51
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.

52
Global Instance big_and_mono' : Proper (Forall2 () ==> ()) (@uPred_big_and M).
53
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
54
Global Instance big_sep_mono' : Proper (Forall2 () ==> ()) (@uPred_big_sep M).
55
56
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.

57
Global Instance big_and_perm : Proper (() ==> ()) (@uPred_big_and M).
58
59
Proof.
  induction 1 as [|P Ps Qs ? IH|P Q Ps|]; simpl; auto.
60
61
  - by rewrite IH.
  - by rewrite !assoc (comm _ P).
62
  - etrans; eauto.
63
Qed.
64
Global Instance big_sep_perm : Proper (() ==> ()) (@uPred_big_sep M).
65
66
Proof.
  induction 1 as [|P Ps Qs ? IH|P Q Ps|]; simpl; auto.
67
68
  - by rewrite IH.
  - by rewrite !assoc (comm _ P).
69
  - etrans; eauto.
70
Qed.
71

72
Lemma big_and_app Ps Qs : Π (Ps ++ Qs)  (Π Ps  Π Qs).
73
Proof. by induction Ps as [|?? IH]; rewrite /= ?left_id -?assoc ?IH. Qed.
74
Lemma big_sep_app Ps Qs : Π★ (Ps ++ Qs)  (Π★ Ps  Π★ Qs).
75
Proof. by induction Ps as [|?? IH]; rewrite /= ?left_id -?assoc ?IH. Qed.
76

77
Lemma big_and_contains Ps Qs : Qs `contains` Ps  Π Ps  Π Qs.
78
Proof.
79
  intros [Ps' ->]%contains_Permutation. by rewrite big_and_app and_elim_l.
80
Qed.
81
Lemma big_sep_contains Ps Qs : Qs `contains` Ps  Π★ Ps  Π★ Qs.
82
Proof.
83
  intros [Ps' ->]%contains_Permutation. by rewrite big_sep_app sep_elim_l.
84
85
Qed.

86
Lemma big_sep_and Ps : Π★ Ps  Π Ps.
87
Proof. by induction Ps as [|P Ps IH]; simpl; auto with I. Qed.
88

89
Lemma big_and_elem_of Ps P : P  Ps  Π Ps  P.
90
Proof. induction 1; simpl; auto with I. Qed.
91
Lemma big_sep_elem_of Ps P : P  Ps  Π★ Ps  P.
92
93
Proof. induction 1; simpl; auto with I. Qed.

94
(* Big ops over finite maps *)
95
96
97
Section gmap.
  Context `{Countable K} {A : Type}.
  Implicit Types m : gmap K A.
98
  Implicit Types Φ Ψ : K  A  uPred M.
99

100
  Lemma big_sepM_mono Φ Ψ m1 m2 :
101
    m2  m1  ( x k, m2 !! k = Some x  Φ k x  Ψ k x) 
102
    Π★{map m1} Φ  Π★{map m2} Ψ.
103
  Proof.
104
    intros HX HΦ. trans (Π★{map m2} Φ)%I.
105
    - by apply big_sep_contains, fmap_contains, map_to_list_contains.
106
    - apply big_sep_mono', Forall2_fmap, Forall_Forall2.
107
      apply Forall_forall=> -[i x] ? /=. by apply HΦ, elem_of_map_to_list.
108
  Qed.
109
110
111
112
113

  Global Instance big_sepM_ne m n :
    Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> (dist n))
           (uPred_big_sepM (M:=M) m).
  Proof.
114
    intros Φ1 Φ2 HΦ. apply big_sep_ne, Forall2_fmap.
115
    apply Forall_Forall2, Forall_true=> -[i x]; apply HΦ.
116
117
  Qed.
  Global Instance big_sepM_proper m :
118
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
119
120
           (uPred_big_sepM (M:=M) m).
  Proof.
121
122
    intros Φ1 Φ2 HΦ; apply equiv_dist=> n.
    apply big_sepM_ne=> k x; apply equiv_dist, HΦ.
123
124
  Qed.
  Global Instance big_sepM_mono' m :
125
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
126
           (uPred_big_sepM (M:=M) m).
127
  Proof. intros Φ1 Φ2 HΦ. apply big_sepM_mono; intros; [done|apply HΦ]. Qed.
128

129
  Lemma big_sepM_empty Φ : Π★{map } Φ  True.
130
  Proof. by rewrite /uPred_big_sepM map_to_list_empty. Qed.
131
  Lemma big_sepM_insert Φ (m : gmap K A) i x :
132
    m !! i = None  Π★{map <[i:=x]> m} Φ  (Φ i x  Π★{map m} Φ).
133
  Proof. intros ?; by rewrite /uPred_big_sepM map_to_list_insert. Qed.
134
  Lemma big_sepM_singleton Φ i x : Π★{map {[i := x]}} Φ  (Φ i x).
135
136
137
138
  Proof.
    rewrite -insert_empty big_sepM_insert/=; last auto using lookup_empty.
    by rewrite big_sepM_empty right_id.
  Qed.
139

140
  Lemma big_sepM_sepM Φ Ψ m :
141
    Π★{map m} (λ i x, Φ i x  Ψ i x)  (Π★{map m} Φ  Π★{map m} Ψ).
142
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
144
    rewrite /uPred_big_sepM.
    induction (map_to_list m) as [|[i x] l IH]; csimpl; rewrite ?right_id //.
145
    by rewrite IH -!assoc (assoc _ (Ψ _ _)) [(Ψ _ _  _)%I]comm -!assoc.
146
  Qed.
147
  Lemma big_sepM_later Φ m :  Π★{map m} Φ  Π★{map m} (λ i x,  Φ i x).
148
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
149
150
151
    rewrite /uPred_big_sepM.
    induction (map_to_list m) as [|[i x] l IH]; csimpl; rewrite ?later_True //.
    by rewrite later_sep IH.
152
  Qed.
153
154
155
156
157
158
End gmap.

(* Big ops over finite sets *)
Section gset.
  Context `{Countable A}.
  Implicit Types X : gset A.
159
  Implicit Types Φ : A  uPred M.
160

161
  Lemma big_sepS_mono Φ Ψ X Y :
162
    Y  X  ( x, x  Y  Φ x  Ψ x)  Π★{set X} Φ  Π★{set Y} Ψ.
163
  Proof.
164
    intros HX HΦ. trans (Π★{set Y} Φ)%I.
165
    - by apply big_sep_contains, fmap_contains, elements_contains.
166
    - apply big_sep_mono', Forall2_fmap, Forall_Forall2.
167
      apply Forall_forall=> x ? /=. by apply HΦ, elem_of_elements.
168
169
170
171
172
  Qed.

  Lemma big_sepS_ne X n :
    Proper (pointwise_relation _ (dist n) ==> dist n) (uPred_big_sepS (M:=M) X).
  Proof.
173
    intros Φ1 Φ2 HΦ. apply big_sep_ne, Forall2_fmap.
174
    apply Forall_Forall2, Forall_true=> x; apply HΦ.
175
176
  Qed.
  Lemma big_sepS_proper X :
177
    Proper (pointwise_relation _ () ==> ()) (uPred_big_sepS (M:=M) X).
178
  Proof.
179
180
    intros Φ1 Φ2 HΦ; apply equiv_dist=> n.
    apply big_sepS_ne=> x; apply equiv_dist, HΦ.
181
182
  Qed.
  Lemma big_sepS_mono' X :
183
    Proper (pointwise_relation _ () ==> ()) (uPred_big_sepS (M:=M) X).
184
  Proof. intros Φ1 Φ2 HΦ. apply big_sepS_mono; naive_solver. Qed.
185

186
  Lemma big_sepS_empty Φ : Π★{set } Φ  True.
187
  Proof. by rewrite /uPred_big_sepS elements_empty. Qed.
188
  Lemma big_sepS_insert Φ X x :
189
    x  X  Π★{set {[ x ]}  X} Φ  (Φ x  Π★{set X} Φ).
190
  Proof. intros. by rewrite /uPred_big_sepS elements_union_singleton. Qed.
191
  Lemma big_sepS_delete Φ X x :
192
    x  X  Π★{set X} Φ  (Φ x  Π★{set X  {[ x ]}} Φ).
193
  Proof.
194
195
    intros. rewrite -big_sepS_insert; last set_solver.
    by rewrite -union_difference_L; last set_solver.
196
  Qed.
197
  Lemma big_sepS_singleton Φ x : Π★{set {[ x ]}} Φ  (Φ x).
198
  Proof. intros. by rewrite /uPred_big_sepS elements_singleton /= right_id. Qed.
199

200
  Lemma big_sepS_sepS Φ Ψ X :
201
    Π★{set X} (λ x, Φ x  Ψ x)  (Π★{set X} Φ  Π★{set X} Ψ).
202
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
203
204
    rewrite /uPred_big_sepS.
    induction (elements X) as [|x l IH]; csimpl; first by rewrite ?right_id.
205
    by rewrite IH -!assoc (assoc _ (Ψ _)) [(Ψ _  _)%I]comm -!assoc.
206
207
  Qed.

208
  Lemma big_sepS_later Φ X :  Π★{set X} Φ  Π★{set X} (λ x,  Φ x).
209
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
210
211
212
    rewrite /uPred_big_sepS.
    induction (elements X) as [|x l IH]; csimpl; first by rewrite ?later_True.
    by rewrite later_sep IH.
213
  Qed.
214
End gset.
215

216
(* Always stable *)
217
Global Instance big_and_persistent Ps : PersistentL Ps  PersistentP (Π Ps).
218
Proof. induction 1; apply _. Qed.
219
Global Instance big_sep_persistent Ps : PersistentL Ps  PersistentP (Π★ Ps).
220
221
Proof. induction 1; apply _. Qed.

222
Global Instance nil_persistent : PersistentL (@nil (uPred M)).
223
Proof. constructor. Qed.
224
Global Instance cons_persistent P Ps :
225
  PersistentP P  PersistentL Ps  PersistentL (P :: Ps).
226
Proof. by constructor. Qed.
227
228
Global Instance app_persistent Ps Ps' :
  PersistentL Ps  PersistentL Ps'  PersistentL (Ps ++ Ps').
229
Proof. apply Forall_app_2. Qed.
230
Global Instance zip_with_persistent {A B} (f : A  B  uPred M) xs ys :
231
  ( x y, PersistentP (f x y))  PersistentL (zip_with f xs ys).
232
233
234
Proof.
  unfold PersistentL=> ?; revert ys; induction xs=> -[|??]; constructor; auto.
Qed.
235
End big_op.