csum.v 15.4 KB
Newer Older
1
From iris.algebra Require Export cmra.
2 3
From iris.base_logic Require Import base_logic.
From iris.algebra Require Import local_updates.
4
Set Default Proof Using "Type".
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
5 6 7 8 9 10 11 12
Local Arguments pcore _ _ !_ /.
Local Arguments cmra_pcore _ !_ /.
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Local Arguments cmra_validN _ _ !_ /.
Local Arguments cmra_valid _  !_ /.

Inductive csum (A B : Type) :=
13 14 15
  | Cinl : A  csum A B
  | Cinr : B  csum A B
  | CsumBot : csum A B.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
16 17 18 19
Arguments Cinl {_ _} _.
Arguments Cinr {_ _} _.
Arguments CsumBot {_ _}.

20 21 22
Instance: Params (@Cinl) 2 := {}.
Instance: Params (@Cinr) 2 := {}.
Instance: Params (@CsumBot) 2 := {}.
23

Robbert Krebbers's avatar
Robbert Krebbers committed
24 25 26 27 28
Instance maybe_Cinl {A B} : Maybe (@Cinl A B) := λ x,
  match x with Cinl a => Some a | _ => None end.
Instance maybe_Cinr {A B} : Maybe (@Cinr A B) := λ x,
  match x with Cinr b => Some b | _ => None end.

Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
29
Section cofe.
30
Context {A B : ofeT}.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
31 32 33 34 35
Implicit Types a : A.
Implicit Types b : B.

(* Cofe *)
Inductive csum_equiv : Equiv (csum A B) :=
36
  | Cinl_equiv a a' : a  a'  Cinl a  Cinl a'
Jacques-Henri Jourdan's avatar
Typo.  
Jacques-Henri Jourdan committed
37
  | Cinr_equiv b b' : b  b'  Cinr b  Cinr b'
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
38 39 40
  | CsumBot_equiv : CsumBot  CsumBot.
Existing Instance csum_equiv.
Inductive csum_dist : Dist (csum A B) :=
41
  | Cinl_dist n a a' : a {n} a'  Cinl a {n} Cinl a'
Jacques-Henri Jourdan's avatar
Typo.  
Jacques-Henri Jourdan committed
42
  | Cinr_dist n b b' : b {n} b'  Cinr b {n} Cinr b'
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
43 44 45
  | CsumBot_dist n : CsumBot {n} CsumBot.
Existing Instance csum_dist.

46
Global Instance Cinl_ne : NonExpansive (@Cinl A B).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
47 48 49 50 51 52 53
Proof. by constructor. Qed.
Global Instance Cinl_proper : Proper (() ==> ()) (@Cinl A B).
Proof. by constructor. Qed.
Global Instance Cinl_inj : Inj () () (@Cinl A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinl_inj_dist n : Inj (dist n) (dist n) (@Cinl A B).
Proof. by inversion_clear 1. Qed.
54
Global Instance Cinr_ne : NonExpansive (@Cinr A B).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
55 56 57 58 59 60 61 62
Proof. by constructor. Qed.
Global Instance Cinr_proper : Proper (() ==> ()) (@Cinr A B).
Proof. by constructor. Qed.
Global Instance Cinr_inj : Inj () () (@Cinr A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinr_inj_dist n : Inj (dist n) (dist n) (@Cinr A B).
Proof. by inversion_clear 1. Qed.

63
Definition csum_ofe_mixin : OfeMixin (csum A B).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
64 65 66 67 68 69 70 71 72 73 74 75
Proof.
  split.
  - intros mx my; split.
    + by destruct 1; constructor; try apply equiv_dist.
    + intros Hxy; feed inversion (Hxy 0); subst; constructor; try done;
      apply equiv_dist=> n; by feed inversion (Hxy n).
  - intros n; split.
    + by intros [|a|]; constructor.
    + by destruct 1; constructor.
    + destruct 1; inversion_clear 1; constructor; etrans; eauto.
  - by inversion_clear 1; constructor; apply dist_S.
Qed.
76
Canonical Structure csumO : ofeT := OfeT (csum A B) csum_ofe_mixin.
77

78
Program Definition csum_chain_l (c : chain csumO) (a : A) : chain A :=
79 80
  {| chain_car n := match c n return _ with Cinl a' => a' | _ => a end |}.
Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
81
Program Definition csum_chain_r (c : chain csumO) (b : B) : chain B :=
82 83
  {| chain_car n := match c n return _ with Cinr b' => b' | _ => b end |}.
Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
84
Definition csum_compl `{Cofe A, Cofe B} : Compl csumO := λ c,
85 86 87 88 89
  match c 0 with
  | Cinl a => Cinl (compl (csum_chain_l c a))
  | Cinr b => Cinr (compl (csum_chain_r c b))
  | CsumBot => CsumBot
  end.
90
Global Program Instance csum_cofe `{Cofe A, Cofe B} : Cofe csumO :=
91 92 93 94 95 96 97 98
  {| compl := csum_compl |}.
Next Obligation.
  intros ?? n c; rewrite /compl /csum_compl.
  feed inversion (chain_cauchy c 0 n); first auto with lia; constructor.
  + rewrite (conv_compl n (csum_chain_l c a')) /=. destruct (c n); naive_solver.
  + rewrite (conv_compl n (csum_chain_r c b')) /=. destruct (c n); naive_solver.
Qed.

99
Global Instance csum_ofe_discrete :
100
  OfeDiscrete A  OfeDiscrete B  OfeDiscrete csumO.
101
Proof. by inversion_clear 3; constructor; apply (discrete _). Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
102
Global Instance csum_leibniz :
103
  LeibnizEquiv A  LeibnizEquiv B  LeibnizEquiv csumO.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
104 105
Proof. by destruct 3; f_equal; apply leibniz_equiv. Qed.

106 107 108 109
Global Instance Cinl_discrete a : Discrete a  Discrete (Cinl a).
Proof. by inversion_clear 2; constructor; apply (discrete _). Qed.
Global Instance Cinr_discrete b : Discrete b  Discrete (Cinr b).
Proof. by inversion_clear 2; constructor; apply (discrete _). Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
110 111
End cofe.

112
Arguments csumO : clear implicits.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
113 114 115 116 117 118 119 120 121

(* Functor on COFEs *)
Definition csum_map {A A' B B'} (fA : A  A') (fB : B  B')
                    (x : csum A B) : csum A' B' :=
  match x with
  | Cinl a => Cinl (fA a)
  | Cinr b => Cinr (fB b)
  | CsumBot => CsumBot
  end.
122
Instance: Params (@csum_map) 4 := {}.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
123 124 125 126 127 128 129

Lemma csum_map_id {A B} (x : csum A B) : csum_map id id x = x.
Proof. by destruct x. Qed.
Lemma csum_map_compose {A A' A'' B B' B''} (f : A  A') (f' : A'  A'')
                       (g : B  B') (g' : B'  B'') (x : csum A B) :
  csum_map (f'  f) (g'  g) x = csum_map f' g' (csum_map f g x).
Proof. by destruct x. Qed.
130
Lemma csum_map_ext {A A' B B' : ofeT} (f f' : A  A') (g g' : B  B') x :
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
131 132
  ( x, f x  f' x)  ( x, g x  g' x)  csum_map f g x  csum_map f' g' x.
Proof. by destruct x; constructor. Qed.
133
Instance csum_map_cmra_ne {A A' B B' : ofeT} n :
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
134 135 136
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==> dist n ==> dist n)
         (@csum_map A A' B B').
Proof. intros f f' Hf g g' Hg []; destruct 1; constructor; by apply Hf || apply Hg. Qed.
137 138 139 140 141
Definition csumO_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  csumO A B -n> csumO A' B' :=
  OfeMor (csum_map f g).
Instance csumO_map_ne A A' B B' :
  NonExpansive2 (@csumO_map A A' B B').
142
Proof. by intros n f f' Hf g g' Hg []; constructor. Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

Section cmra.
Context {A B : cmraT}.
Implicit Types a : A.
Implicit Types b : B.

(* CMRA *)
Instance csum_valid : Valid (csum A B) := λ x,
  match x with
  | Cinl a =>  a
  | Cinr b =>  b
  | CsumBot => False
  end.
Instance csum_validN : ValidN (csum A B) := λ n x,
  match x with
  | Cinl a => {n} a
  | Cinr b => {n} b
  | CsumBot => False
  end.
Instance csum_pcore : PCore (csum A B) := λ x,
  match x with
  | Cinl a => Cinl <$> pcore a
  | Cinr b => Cinr <$> pcore b
  | CsumBot => Some CsumBot
  end.
Instance csum_op : Op (csum A B) := λ x y,
  match x, y with
  | Cinl a, Cinl a' => Cinl (a  a')
  | Cinr b, Cinr b' => Cinr (b  b')
  | _, _ => CsumBot
  end.

175
Lemma Cinl_op a a' : Cinl (a  a') = Cinl a  Cinl a'.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
176
Proof. done. Qed.
177
Lemma Cinr_op b b' : Cinr (b  b') = Cinr b  Cinr b'.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
178 179 180 181 182 183 184
Proof. done. Qed.

Lemma csum_included x y :
  x  y  y = CsumBot  ( a a', x = Cinl a  y = Cinl a'  a  a')
                       ( b b', x = Cinr b  y = Cinr b'  b  b').
Proof.
  split.
185 186 187 188 189 190 191
  - unfold included. intros [[a'|b'|] Hy]; destruct x as [a|b|];
      inversion_clear Hy; eauto 10.
  - intros [->|[(a&a'&->&->&c&?)|(b&b'&->&->&c&?)]].
    + destruct x; exists CsumBot; constructor.
    + exists (Cinl c); by constructor.
    + exists (Cinr c); by constructor.
Qed.
192 193 194 195
Lemma Cinl_included a a' : Cinl a  Cinl a'  a  a'.
Proof. rewrite csum_included. naive_solver. Qed.
Lemma Cinr_included b b' : Cinr b  Cinr b'  b  b'.
Proof. rewrite csum_included. naive_solver. Qed.
196 197 198 199 200 201 202 203

Lemma csum_includedN n x y :
  x {n} y  y = CsumBot  ( a a', x = Cinl a  y = Cinl a'  a {n} a')
                          ( b b', x = Cinr b  y = Cinr b'  b {n} b').
Proof.
  split.
  - unfold includedN. intros [[a'|b'|] Hy]; destruct x as [a|b|];
      inversion_clear Hy; eauto 10.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
204 205 206 207 208 209
  - intros [->|[(a&a'&->&->&c&?)|(b&b'&->&->&c&?)]].
    + destruct x; exists CsumBot; constructor.
    + exists (Cinl c); by constructor.
    + exists (Cinr c); by constructor.
Qed.

210
Lemma csum_cmra_mixin : CmraMixin (csum A B).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
211 212
Proof.
  split.
213
  - intros [] n; destruct 1; constructor; by ofe_subst.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
214 215 216 217 218 219 220
  - intros ???? [n a a' Ha|n b b' Hb|n] [=]; subst; eauto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_ne n a a' ca) as (ca'&->&?); auto.
      exists (Cinl ca'); by repeat constructor.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_ne n b b' cb) as (cb'&->&?); auto.
      exists (Cinr cb'); by repeat constructor.
221
  - intros ? [a|b|] [a'|b'|] H; inversion_clear H; ofe_subst; done.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
  - intros [a|b|]; rewrite /= ?cmra_valid_validN; naive_solver eauto using O.
  - intros n [a|b|]; simpl; auto using cmra_validN_S.
  - intros [a1|b1|] [a2|b2|] [a3|b3|]; constructor; by rewrite ?assoc.
  - intros [a1|b1|] [a2|b2|]; constructor; by rewrite 1?comm.
  - intros [a|b|] ? [=]; subst; auto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      constructor; eauto using cmra_pcore_l.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      constructor; eauto using cmra_pcore_l.
  - intros [a|b|] ? [=]; subst; auto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      feed inversion (cmra_pcore_idemp a ca); repeat constructor; auto.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      feed inversion (cmra_pcore_idemp b cb); repeat constructor; auto.
  - intros x y ? [->|[(a&a'&->&->&?)|(b&b'&->&->&?)]]%csum_included [=].
    + exists CsumBot. rewrite csum_included; eauto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
239
      destruct (cmra_pcore_mono a a' ca) as (ca'&->&?); auto.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
240 241
      exists (Cinl ca'). rewrite csum_included; eauto 10.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
242
      destruct (cmra_pcore_mono b b' cb) as (cb'&->&?); auto.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
243 244 245
      exists (Cinr cb'). rewrite csum_included; eauto 10.
  - intros n [a1|b1|] [a2|b2|]; simpl; eauto using cmra_validN_op_l; done.
  - intros n [a|b|] y1 y2 Hx Hx'.
246 247
    + destruct y1 as [a1|b1|], y2 as [a2|b2|]; try by exfalso; inversion Hx'.
      destruct (cmra_extend n a a1 a2) as (z1&z2&?&?&?); [done|apply (inj Cinl), Hx'|].
248
      exists (Cinl z1), (Cinl z2). by repeat constructor.
249 250
    + destruct y1 as [a1|b1|], y2 as [a2|b2|]; try by exfalso; inversion Hx'.
      destruct (cmra_extend n b b1 b2) as (z1&z2&?&?&?); [done|apply (inj Cinr), Hx'|].
251 252
      exists (Cinr z1), (Cinr z2). by repeat constructor.
    + by exists CsumBot, CsumBot; destruct y1, y2; inversion_clear Hx'.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
253
Qed.
254
Canonical Structure csumR := CmraT (csum A B) csum_cmra_mixin.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
255 256

Global Instance csum_cmra_discrete :
257
  CmraDiscrete A  CmraDiscrete B  CmraDiscrete csumR.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
258 259 260 261 262
Proof.
  split; first apply _.
  by move=>[a|b|] HH /=; try apply cmra_discrete_valid.
Qed.

263 264 265 266
Global Instance Cinl_core_id a : CoreId a  CoreId (Cinl a).
Proof. rewrite /CoreId /=. inversion_clear 1; by repeat constructor. Qed.
Global Instance Cinr_core_id b : CoreId b  CoreId (Cinr b).
Proof. rewrite /CoreId /=. inversion_clear 1; by repeat constructor. Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
267

268
Global Instance Cinl_exclusive a : Exclusive a  Exclusive (Cinl a).
269
Proof. by move=> H[]? =>[/H||]. Qed.
270
Global Instance Cinr_exclusive b : Exclusive b  Exclusive (Cinr b).
271
Proof. by move=> H[]? =>[|/H|]. Qed.
272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
Global Instance Cinl_cancelable a : Cancelable a  Cancelable (Cinl a).
Proof.
  move=> ?? [y|y|] [z|z|] ? EQ //; inversion_clear EQ.
  constructor. by eapply (cancelableN a).
Qed.
Global Instance Cinr_cancelable b : Cancelable b  Cancelable (Cinr b).
Proof.
  move=> ?? [y|y|] [z|z|] ? EQ //; inversion_clear EQ.
  constructor. by eapply (cancelableN b).
Qed.

Global Instance Cinl_id_free a : IdFree a  IdFree (Cinl a).
Proof. intros ? [] ? EQ; inversion_clear EQ. by eapply id_free0_r. Qed.
Global Instance Cinr_id_free b : IdFree b  IdFree (Cinr b).
Proof. intros ? [] ? EQ; inversion_clear EQ. by eapply id_free0_r. Qed.

Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
289 290
(** Internalized properties *)
Lemma csum_equivI {M} (x y : csum A B) :
291 292 293 294 295 296
  x  y @{uPredI M} match x, y with
                      | Cinl a, Cinl a' => a  a'
                      | Cinr b, Cinr b' => b  b'
                      | CsumBot, CsumBot => True
                      | _, _ => False
                      end.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
297 298 299 300 301
Proof.
  uPred.unseal; do 2 split; first by destruct 1.
  by destruct x, y; try destruct 1; try constructor.
Qed.
Lemma csum_validI {M} (x : csum A B) :
302 303 304 305 306
   x @{uPredI M} match x with
                    | Cinl a =>  a
                    | Cinr b =>  b
                    | CsumBot => False
                    end.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
Proof. uPred.unseal. by destruct x. Qed.

(** Updates *)
Lemma csum_update_l (a1 a2 : A) : a1 ~~> a2  Cinl a1 ~~> Cinl a2.
Proof.
  intros Ha n [[a|b|]|] ?; simpl in *; auto.
  - by apply (Ha n (Some a)).
  - by apply (Ha n None).
Qed.
Lemma csum_update_r (b1 b2 : B) : b1 ~~> b2  Cinr b1 ~~> Cinr b2.
Proof.
  intros Hb n [[a|b|]|] ?; simpl in *; auto.
  - by apply (Hb n (Some b)).
  - by apply (Hb n None).
Qed.
Lemma csum_updateP_l (P : A  Prop) (Q : csum A B  Prop) a :
  a ~~>: P  ( a', P a'  Q (Cinl a'))  Cinl a ~~>: Q.
Proof.
  intros Hx HP n mf Hm. destruct mf as [[a'|b'|]|]; try by destruct Hm.
  - destruct (Hx n (Some a')) as (c&?&?); naive_solver.
  - destruct (Hx n None) as (c&?&?); naive_solver eauto using cmra_validN_op_l.
Qed.
Lemma csum_updateP_r (P : B  Prop) (Q : csum A B  Prop) b :
  b ~~>: P  ( b', P b'  Q (Cinr b'))  Cinr b  ~~>: Q.
Proof.
  intros Hx HP n mf Hm. destruct mf as [[a'|b'|]|]; try by destruct Hm.
  - destruct (Hx n (Some b')) as (c&?&?); naive_solver.
  - destruct (Hx n None) as (c&?&?); naive_solver eauto using cmra_validN_op_l.
Qed.
Lemma csum_updateP'_l (P : A  Prop) a :
  a ~~>: P  Cinl a ~~>: λ m',  a', m' = Cinl a'  P a'.
Proof. eauto using csum_updateP_l. Qed.
Lemma csum_updateP'_r (P : B  Prop) b :
  b ~~>: P  Cinr b ~~>: λ m',  b', m' = Cinr b'  P b'.
Proof. eauto using csum_updateP_r. Qed.
342 343 344

Lemma csum_local_update_l (a1 a2 a1' a2' : A) :
  (a1,a2) ~l~> (a1',a2')  (Cinl a1,Cinl a2) ~l~> (Cinl a1',Cinl a2').
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
345
Proof.
346 347 348 349
  intros Hup n mf ? Ha1; simpl in *.
  destruct (Hup n (mf = maybe Cinl)); auto.
  { by destruct mf as [[]|]; inversion_clear Ha1. }
  split. done. by destruct mf as [[]|]; inversion_clear Ha1; constructor.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
350
Qed.
351 352
Lemma csum_local_update_r (b1 b2 b1' b2' : B) :
  (b1,b2) ~l~> (b1',b2')  (Cinr b1,Cinr b2) ~l~> (Cinr b1',Cinr b2').
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
353
Proof.
354 355 356 357
  intros Hup n mf ? Ha1; simpl in *.
  destruct (Hup n (mf = maybe Cinr)); auto.
  { by destruct mf as [[]|]; inversion_clear Ha1. }
  split. done. by destruct mf as [[]|]; inversion_clear Ha1; constructor.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
358
Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
359 360 361 362 363
End cmra.

Arguments csumR : clear implicits.

(* Functor *)
364
Instance csum_map_cmra_morphism {A A' B B' : cmraT} (f : A  A') (g : B  B') :
365
  CmraMorphism f  CmraMorphism g  CmraMorphism (csum_map f g).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
366 367
Proof.
  split; try apply _.
368
  - intros n [a|b|]; simpl; auto using cmra_morphism_validN.
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
369
  - move=> [a|b|]=>//=; rewrite -cmra_morphism_pcore; by destruct pcore.
370
  - intros [xa|ya|] [xb|yb|]=>//=; by rewrite cmra_morphism_op.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
371 372 373
Qed.

Program Definition csumRF (Fa Fb : rFunctor) : rFunctor := {|
374
  rFunctor_car A _ B _ := csumR (rFunctor_car Fa A B) (rFunctor_car Fb A B);
375
  rFunctor_map A1 _ A2 _ B1 _ B2 _ fg := csumO_map (rFunctor_map Fa fg) (rFunctor_map Fb fg)
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
376 377
|}.
Next Obligation.
378
  by intros Fa Fb A1 ? A2 ? B1 ? B2 ? n f g Hfg; apply csumO_map_ne; try apply rFunctor_ne.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
379 380
Qed.
Next Obligation.
381
  intros Fa Fb A ? B ? x. rewrite /= -{2}(csum_map_id x).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
382 383 384
  apply csum_map_ext=>y; apply rFunctor_id.
Qed.
Next Obligation.
385
  intros Fa Fb A1 ? A2 ? A3 ? B1 ? B2 ? B3 ? f g f' g' x. rewrite /= -csum_map_compose.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
386 387 388 389 390 391 392
  apply csum_map_ext=>y; apply rFunctor_compose.
Qed.

Instance csumRF_contractive Fa Fb :
  rFunctorContractive Fa  rFunctorContractive Fb 
  rFunctorContractive (csumRF Fa Fb).
Proof.
393
  intros ?? A1 ? A2 ? B1 ? B2 ? n f g Hfg.
394
  by apply csumO_map_ne; try apply rFunctor_contractive.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
395
Qed.