class_instances.v 16.3 KB
Newer Older
1
From iris.proofmode Require Export classes.
2
3
From iris.algebra Require Import gmap.
From iris.base_logic Require Import big_op.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Import uPred.

Section classes.
Context {M : ucmraT}.
Implicit Types P Q R : uPred M.

(* FromAssumption *)
Global Instance from_assumption_exact p P : FromAssumption p P P.
Proof. destruct p; by rewrite /FromAssumption /= ?always_elim. Qed.
Global Instance from_assumption_always_l p P Q :
  FromAssumption p P Q  FromAssumption p ( P) Q.
Proof. rewrite /FromAssumption=><-. by rewrite always_elim. Qed.
Global Instance from_assumption_always_r P Q :
  FromAssumption true P Q  FromAssumption true P ( Q).
Proof. rewrite /FromAssumption=><-. by rewrite always_always. Qed.
19
Global Instance from_assumption_bupd p P Q :
20
  FromAssumption p P Q  FromAssumption p P (|==> Q)%I.
21
Proof. rewrite /FromAssumption=>->. apply bupd_intro. Qed.
22
23
24
25
26
27
28

(* IntoPure *)
Global Instance into_pure_pure φ : @IntoPure M ( φ) φ.
Proof. done. Qed.
Global Instance into_pure_eq {A : cofeT} (a b : A) :
  Timeless a  @IntoPure M (a  b) (a  b).
Proof. intros. by rewrite /IntoPure timeless_eq. Qed.
29
30
Global Instance into_pure_cmra_valid `{CMRADiscrete A} (a : A) :
  @IntoPure M ( a) ( a).
31
32
33
34
Proof. by rewrite /IntoPure discrete_valid. Qed.

(* FromPure *)
Global Instance from_pure_pure φ : @FromPure M ( φ) φ.
35
Proof. done. Qed.
36
Global Instance from_pure_eq {A : cofeT} (a b : A) : @FromPure M (a  b) (a  b).
37
Proof. rewrite /FromPure. eapply pure_elim; [done|]=> ->. apply eq_refl'. Qed.
38
39
Global Instance from_pure_cmra_valid {A : cmraT} (a : A) :
  @FromPure M ( a) ( a).
40
41
Proof.
  rewrite /FromPure. eapply pure_elim; [done|]=> ?.
42
  rewrite -cmra_valid_intro //. auto with I.
43
Qed.
44
Global Instance from_pure_bupd P φ : FromPure P φ  FromPure (|==> P) φ.
45
Proof. rewrite /FromPure=> ->. apply bupd_intro. Qed.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

(* IntoPersistentP *)
Global Instance into_persistentP_always_trans P Q :
  IntoPersistentP P Q  IntoPersistentP ( P) Q | 0.
Proof. rewrite /IntoPersistentP=> ->. by rewrite always_always. Qed.
Global Instance into_persistentP_always P : IntoPersistentP ( P) P | 1.
Proof. done. Qed.
Global Instance into_persistentP_persistent P :
  PersistentP P  IntoPersistentP P P | 100.
Proof. done. Qed.

(* IntoLater *)
Global Instance into_later_default P : IntoLater P P | 1000.
Proof. apply later_intro. Qed.
Global Instance into_later_later P : IntoLater ( P) P.
Proof. done. Qed.
Global Instance into_later_and P1 P2 Q1 Q2 :
  IntoLater P1 Q1  IntoLater P2 Q2  IntoLater (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite later_and; apply and_mono. Qed.
Global Instance into_later_or P1 P2 Q1 Q2 :
  IntoLater P1 Q1  IntoLater P2 Q2  IntoLater (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite later_or; apply or_mono. Qed.
Global Instance into_later_sep P1 P2 Q1 Q2 :
  IntoLater P1 Q1  IntoLater P2 Q2  IntoLater (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite later_sep; apply sep_mono. Qed.

Global Instance into_later_big_sepM `{Countable K} {A}
    (Φ Ψ : K  A  uPred M) (m : gmap K A) :
  ( x k, IntoLater (Φ k x) (Ψ k x)) 
  IntoLater ([ map] k  x  m, Φ k x) ([ map] k  x  m, Ψ k x).
Proof.
  rewrite /IntoLater=> ?. rewrite big_sepM_later; by apply big_sepM_mono.
Qed.
Global Instance into_later_big_sepS `{Countable A}
    (Φ Ψ : A  uPred M) (X : gset A) :
  ( x, IntoLater (Φ x) (Ψ x)) 
  IntoLater ([ set] x  X, Φ x) ([ set] x  X, Ψ x).
Proof.
  rewrite /IntoLater=> ?. rewrite big_sepS_later; by apply big_sepS_mono.
Qed.

(* FromLater *)
Global Instance from_later_later P : FromLater ( P) P.
Proof. done. Qed.
Global Instance from_later_and P1 P2 Q1 Q2 :
  FromLater P1 Q1  FromLater P2 Q2  FromLater (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite later_and; apply and_mono. Qed.
Global Instance from_later_or P1 P2 Q1 Q2 :
  FromLater P1 Q1  FromLater P2 Q2  FromLater (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite later_or; apply or_mono. Qed.
Global Instance from_later_sep P1 P2 Q1 Q2 :
  FromLater P1 Q1  FromLater P2 Q2  FromLater (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite later_sep; apply sep_mono. Qed.

(* IntoWand *)
101
102
103
104
105
106
Global Instance into_wand_wand P Q Q' :
  FromAssumption false Q Q'  IntoWand (P - Q) P Q'.
Proof. by rewrite /FromAssumption /IntoWand /= => ->. Qed.
Global Instance into_wand_impl P Q Q' :
  FromAssumption false Q Q'  IntoWand (P  Q) P Q'.
Proof. rewrite /FromAssumption /IntoWand /= => ->. by rewrite impl_wand. Qed.
107
108
109
110
111
112
Global Instance into_wand_iff_l P Q : IntoWand (P  Q) P Q.
Proof. by apply and_elim_l', impl_wand. Qed.
Global Instance into_wand_iff_r P Q : IntoWand (P  Q) Q P.
Proof. apply and_elim_r', impl_wand. Qed.
Global Instance into_wand_always R P Q : IntoWand R P Q  IntoWand ( R) P Q.
Proof. rewrite /IntoWand=> ->. apply always_elim. Qed.
113
Global Instance into_wand_bupd R P Q :
114
  IntoWand R P Q  IntoWand R (|==> P) (|==> Q) | 100.
115
Proof. rewrite /IntoWand=>->. apply wand_intro_l. by rewrite bupd_wand_r. Qed.
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

(* FromAnd *)
Global Instance from_and_and P1 P2 : FromAnd (P1  P2) P1 P2.
Proof. done. Qed.
Global Instance from_and_sep_persistent_l P1 P2 :
  PersistentP P1  FromAnd (P1  P2) P1 P2 | 9.
Proof. intros. by rewrite /FromAnd always_and_sep_l. Qed.
Global Instance from_and_sep_persistent_r P1 P2 :
  PersistentP P2  FromAnd (P1  P2) P1 P2 | 10.
Proof. intros. by rewrite /FromAnd always_and_sep_r. Qed.
Global Instance from_and_always P Q1 Q2 :
  FromAnd P Q1 Q2  FromAnd ( P) ( Q1) ( Q2).
Proof. rewrite /FromAnd=> <-. by rewrite always_and. Qed.
Global Instance from_and_later P Q1 Q2 :
  FromAnd P Q1 Q2  FromAnd ( P) ( Q1) ( Q2).
Proof. rewrite /FromAnd=> <-. by rewrite later_and. Qed.

(* FromSep *)
Global Instance from_sep_sep P1 P2 : FromSep (P1  P2) P1 P2 | 100.
Proof. done. Qed.
136
137
138
139
Global Instance from_sep_ownM (a b1 b2 : M) :
  FromOp a b1 b2 
  FromSep (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof. intros. by rewrite /FromSep -ownM_op from_op. Qed.
140
141
142
143
144
145
Global Instance from_sep_always P Q1 Q2 :
  FromSep P Q1 Q2  FromSep ( P) ( Q1) ( Q2).
Proof. rewrite /FromSep=> <-. by rewrite always_sep. Qed.
Global Instance from_sep_later P Q1 Q2 :
  FromSep P Q1 Q2  FromSep ( P) ( Q1) ( Q2).
Proof. rewrite /FromSep=> <-. by rewrite later_sep. Qed.
146
Global Instance from_sep_bupd P Q1 Q2 :
147
  FromSep P Q1 Q2  FromSep (|==> P) (|==> Q1) (|==> Q2).
148
Proof. rewrite /FromSep=><-. apply bupd_sep. Qed.
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Global Instance from_sep_big_sepM
    `{Countable K} {A} (Φ Ψ1 Ψ2 : K  A  uPred M) m :
  ( k x, FromSep (Φ k x) (Ψ1 k x) (Ψ2 k x)) 
  FromSep ([ map] k  x  m, Φ k x)
    ([ map] k  x  m, Ψ1 k x) ([ map] k  x  m, Ψ2 k x).
Proof.
  rewrite /FromSep=> ?. rewrite -big_sepM_sepM. by apply big_sepM_mono.
Qed.
Global Instance from_sep_big_sepS `{Countable A} (Φ Ψ1 Ψ2 : A  uPred M) X :
  ( x, FromSep (Φ x) (Ψ1 x) (Ψ2 x)) 
  FromSep ([ set] x  X, Φ x) ([ set] x  X, Ψ1 x) ([ set] x  X, Ψ2 x).
Proof.
  rewrite /FromSep=> ?. rewrite -big_sepS_sepS. by apply big_sepS_mono.
Qed.

165
166
167
168
169
170
171
172
173
174
175
176
177
178
(* FromOp *)
Global Instance from_op_op {A : cmraT} (a b : A) : FromOp (a  b) a b.
Proof. by rewrite /FromOp. Qed.
Global Instance from_op_persistent {A : cmraT} (a : A) :
  Persistent a  FromOp a a a.
Proof. intros. by rewrite /FromOp -(persistent_dup a). Qed.
Global Instance from_op_pair {A B : cmraT} (a b1 b2 : A) (a' b1' b2' : B) :
  FromOp a b1 b2  FromOp a' b1' b2' 
  FromOp (a,a') (b1,b1') (b2,b2').
Proof. by constructor. Qed.
Global Instance from_op_Some {A : cmraT} (a : A) b1 b2 :
  FromOp a b1 b2  FromOp (Some a) (Some b1) (Some b2).
Proof. by constructor. Qed.

179
180
181
182
183
184
185
186
187
188
189
190
191
192
(* IntoOp *)
Global Instance into_op_op {A : cmraT} (a b : A) : IntoOp (a  b) a b.
Proof. by rewrite /IntoOp. Qed.
Global Instance into_op_persistent {A : cmraT} (a : A) :
  Persistent a  IntoOp a a a.
Proof. intros; apply (persistent_dup a). Qed.
Global Instance into_op_pair {A B : cmraT} (a b1 b2 : A) (a' b1' b2' : B) :
  IntoOp a b1 b2  IntoOp a' b1' b2' 
  IntoOp (a,a') (b1,b1') (b2,b2').
Proof. by constructor. Qed.
Global Instance into_op_Some {A : cmraT} (a : A) b1 b2 :
  IntoOp a b1 b2  IntoOp (Some a) (Some b1) (Some b2).
Proof. by constructor. Qed.

193
194
195
196
(* IntoAnd *)
Global Instance into_and_sep p P Q : IntoAnd p (P  Q) P Q.
Proof. by apply mk_into_and_sep. Qed.
Global Instance into_and_ownM p (a b1 b2 : M) :
197
  IntoOp a b1 b2 
198
199
  IntoAnd p (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof. intros. apply mk_into_and_sep. by rewrite (into_op a) ownM_op. Qed.
200

201
Global Instance into_and_and P Q : IntoAnd true (P  Q) P Q.
202
Proof. done. Qed.
203
204
205
206
207
208
209
210
211
212
213
214
Global Instance into_and_and_persistent_l P Q :
  PersistentP P  IntoAnd false (P  Q) P Q.
Proof. intros; by rewrite /IntoAnd /= always_and_sep_l. Qed.
Global Instance into_and_and_persistent_r P Q :
  PersistentP Q  IntoAnd false (P  Q) P Q.
Proof. intros; by rewrite /IntoAnd /= always_and_sep_r. Qed.

Global Instance into_and_later p P Q1 Q2 :
  IntoAnd p P Q1 Q2  IntoAnd p ( P) ( Q1) ( Q2).
Proof. rewrite /IntoAnd=>->. destruct p; by rewrite ?later_and ?later_sep. Qed.

Global Instance into_and_big_sepM
215
    `{Countable K} {A} (Φ Ψ1 Ψ2 : K  A  uPred M) p m :
216
217
  ( k x, IntoAnd p (Φ k x) (Ψ1 k x) (Ψ2 k x)) 
  IntoAnd p ([ map] k  x  m, Φ k x)
218
219
    ([ map] k  x  m, Ψ1 k x) ([ map] k  x  m, Ψ2 k x).
Proof.
220
  rewrite /IntoAnd=> HΦ. destruct p.
221
222
223
224
  - apply and_intro; apply big_sepM_mono; auto.
    + intros k x ?. by rewrite HΦ and_elim_l.
    + intros k x ?. by rewrite HΦ and_elim_r.
  - rewrite -big_sepM_sepM. apply big_sepM_mono; auto.
225
Qed.
226
227
228
Global Instance into_and_big_sepS `{Countable A} (Φ Ψ1 Ψ2 : A  uPred M) p X :
  ( x, IntoAnd p (Φ x) (Ψ1 x) (Ψ2 x)) 
  IntoAnd p ([ set] x  X, Φ x) ([ set] x  X, Ψ1 x) ([ set] x  X, Ψ2 x).
229
Proof.
230
  rewrite /IntoAnd=> HΦ. destruct p.
231
232
233
234
  - apply and_intro; apply big_sepS_mono; auto.
    + intros x ?. by rewrite HΦ and_elim_l.
    + intros x ?. by rewrite HΦ and_elim_r.
  - rewrite -big_sepS_sepS. apply big_sepS_mono; auto.
235
236
237
238
239
Qed.

(* Frame *)
Global Instance frame_here R : Frame R R True.
Proof. by rewrite /Frame right_id. Qed.
240
241
Global Instance frame_here_pure φ Q : FromPure Q φ  Frame ( φ) Q True.
Proof. rewrite /FromPure /Frame=> ->. by rewrite right_id. Qed.
242
243
244
245
246
247
248
249
250
251
252
253
254

Class MakeSep (P Q PQ : uPred M) := make_sep : P  Q  PQ.
Global Instance make_sep_true_l P : MakeSep True P P.
Proof. by rewrite /MakeSep left_id. Qed.
Global Instance make_sep_true_r P : MakeSep P True P.
Proof. by rewrite /MakeSep right_id. Qed.
Global Instance make_sep_default P Q : MakeSep P Q (P  Q) | 100.
Proof. done. Qed.
Global Instance frame_sep_l R P1 P2 Q Q' :
  Frame R P1 Q  MakeSep Q P2 Q'  Frame R (P1  P2) Q' | 9.
Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc. Qed.
Global Instance frame_sep_r R P1 P2 Q Q' :
  Frame R P2 Q  MakeSep P1 Q Q'  Frame R (P1  P2) Q' | 10.
255
Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc (comm _ R) assoc. Qed.
256
257
258
259
260
261

Class MakeAnd (P Q PQ : uPred M) := make_and : P  Q  PQ.
Global Instance make_and_true_l P : MakeAnd True P P.
Proof. by rewrite /MakeAnd left_id. Qed.
Global Instance make_and_true_r P : MakeAnd P True P.
Proof. by rewrite /MakeAnd right_id. Qed.
262
Global Instance make_and_default P Q : MakeAnd P Q (P  Q) | 100.
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
Proof. done. Qed.
Global Instance frame_and_l R P1 P2 Q Q' :
  Frame R P1 Q  MakeAnd Q P2 Q'  Frame R (P1  P2) Q' | 9.
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.
Global Instance frame_and_r R P1 P2 Q Q' :
  Frame R P2 Q  MakeAnd P1 Q Q'  Frame R (P1  P2) Q' | 10.
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.

Class MakeOr (P Q PQ : uPred M) := make_or : P  Q  PQ.
Global Instance make_or_true_l P : MakeOr True P True.
Proof. by rewrite /MakeOr left_absorb. Qed.
Global Instance make_or_true_r P : MakeOr P True True.
Proof. by rewrite /MakeOr right_absorb. Qed.
Global Instance make_or_default P Q : MakeOr P Q (P  Q) | 100.
Proof. done. Qed.
Global Instance frame_or R P1 P2 Q1 Q2 Q :
  Frame R P1 Q1  Frame R P2 Q2  MakeOr Q1 Q2 Q  Frame R (P1  P2) Q.
Proof. rewrite /Frame /MakeOr => <- <- <-. by rewrite -sep_or_l. Qed.

Global Instance frame_wand R P1 P2 Q2 :
  Frame R P2 Q2  Frame R (P1 - P2) (P1 - Q2).
Proof.
  rewrite /Frame=> ?. apply wand_intro_l.
  by rewrite assoc (comm _ P1) -assoc wand_elim_r.
Qed.

Class MakeLater (P lP : uPred M) := make_later :  P  lP.
Global Instance make_later_true : MakeLater True True.
Proof. by rewrite /MakeLater later_True. Qed.
Global Instance make_later_default P : MakeLater P ( P) | 100.
Proof. done. Qed.

295
Global Instance frame_later R R' P Q Q' :
296
  IntoLater R' R  Frame R P Q  MakeLater Q Q'  Frame R' ( P) Q'.
297
Proof.
298
  rewrite /Frame /MakeLater /IntoLater=>-> <- <-. by rewrite later_sep.
299
300
Qed.

301
302
303
304
Class MakeExcept0 (P Q : uPred M) := make_except_0 :  P  Q.
Global Instance make_except_0_True : MakeExcept0 True True.
Proof. by rewrite /MakeExcept0 except_0_True. Qed.
Global Instance make_except_0_default P : MakeExcept0 P ( P) | 100.
305
306
Proof. done. Qed.

307
308
Global Instance frame_except_0 R P Q Q' :
  Frame R P Q  MakeExcept0 Q Q'  Frame R ( P) Q'.
309
Proof.
310
311
  rewrite /Frame /MakeExcept0=><- <-.
  by rewrite except_0_sep -(except_0_intro R).
312
313
Qed.

314
315
316
317
318
319
320
Global Instance frame_exist {A} R (Φ Ψ : A  uPred M) :
  ( a, Frame R (Φ a) (Ψ a))  Frame R ( x, Φ x) ( x, Ψ x).
Proof. rewrite /Frame=> ?. by rewrite sep_exist_l; apply exist_mono. Qed.
Global Instance frame_forall {A} R (Φ Ψ : A  uPred M) :
  ( a, Frame R (Φ a) (Ψ a))  Frame R ( x, Φ x) ( x, Ψ x).
Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed.

321
Global Instance frame_bupd R P Q : Frame R P Q  Frame R (|==> P) (|==> Q).
322
Proof. rewrite /Frame=><-. by rewrite bupd_frame_l. Qed.
323

324
325
326
(* FromOr *)
Global Instance from_or_or P1 P2 : FromOr (P1  P2) P1 P2.
Proof. done. Qed.
327
Global Instance from_or_bupd P Q1 Q2 :
328
  FromOr P Q1 Q2  FromOr (|==> P) (|==> Q1) (|==> Q2).
329
Proof. rewrite /FromOr=><-. apply or_elim; apply bupd_mono; auto with I. Qed.
330
331
332
333
334
335
336
337
338

(* IntoOr *)
Global Instance into_or_or P Q : IntoOr (P  Q) P Q.
Proof. done. Qed.
Global Instance into_or_later P Q1 Q2 :
  IntoOr P Q1 Q2  IntoOr ( P) ( Q1) ( Q2).
Proof. rewrite /IntoOr=>->. by rewrite later_or. Qed.

(* FromExist *)
339
Global Instance from_exist_exist {A} (Φ : A  uPred M): FromExist ( a, Φ a) Φ.
340
Proof. done. Qed.
341
Global Instance from_exist_bupd {A} P (Φ : A  uPred M) :
342
  FromExist P Φ  FromExist (|==> P) (λ a, |==> Φ a)%I.
343
344
345
Proof.
  rewrite /FromExist=><-. apply exist_elim=> a. by rewrite -(exist_intro a).
Qed.
346
347
348
Global Instance from_exist_later {A} P (Φ : A  uPred M) :
  FromExist P Φ  FromExist ( P) (λ a,  (Φ a))%I.
Proof. rewrite /FromExist=> <-. apply exist_elim=>x. apply later_mono, exist_intro. Qed.
349
350
351
352
353
354
355
356
357
358

(* IntoExist *)
Global Instance into_exist_exist {A} (Φ : A  uPred M) : IntoExist ( a, Φ a) Φ.
Proof. done. Qed.
Global Instance into_exist_later {A} P (Φ : A  uPred M) :
  IntoExist P Φ  Inhabited A  IntoExist ( P) (λ a,  (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP later_exist. Qed.
Global Instance into_exist_always {A} P (Φ : A  uPred M) :
  IntoExist P Φ  IntoExist ( P) (λ a,  (Φ a))%I.
Proof. rewrite /IntoExist=> HP. by rewrite HP always_exist. Qed.
359

360
361
(* IntoExcept0 *)
Global Instance into_except_0_except_0 P : IntoExcept0 ( P) P.
362
Proof. done. Qed.
363
Global Instance into_except_0_timeless P : TimelessP P  IntoExcept0 ( P) P.
364
365
Proof. done. Qed.

366
367
368
369
370
371
(* IsExcept0 *)
Global Instance is_except_0_except_0 P : IsExcept0 ( P).
Proof. by rewrite /IsExcept0 except_0_idemp. Qed.
Global Instance is_except_0_later P : IsExcept0 ( P).
Proof. by rewrite /IsExcept0 except_0_later. Qed.
Global Instance is_except_0_bupd P : IsExcept0 P  IsExcept0 (|==> P).
372
Proof.
373
374
  rewrite /IsExcept0=> HP.
  by rewrite -{2}HP -(except_0_idemp P) -except_0_bupd -(except_0_intro P).
375
Qed.
376

377
(* FromUpd *)
378
Global Instance from_upd_bupd P : FromUpd (|==> P) P.
379
380
Proof. done. Qed.

381
(* ElimVs *)
382
Global Instance elim_upd_bupd_bupd P Q : ElimUpd (|==> P) P (|==> Q) (|==> Q).
383
Proof. by rewrite /ElimUpd bupd_frame_r wand_elim_r bupd_trans. Qed.
384
End classes.