agree.v 17 KB
Newer Older
1
From iris.algebra Require Export cmra.
Ralf Jung's avatar
Ralf Jung committed
2
From iris.algebra Require Import list.
3
From iris.base_logic Require Import base_logic.
4 5
(* FIXME: This file needs a 'Proof Using' hint. *)

Ralf Jung's avatar
Ralf Jung committed
6 7 8 9
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Local Arguments op _ _ _ !_ /.
Local Arguments pcore _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
10

11
Record agree (A : Type) : Type := Agree {
Ralf Jung's avatar
Ralf Jung committed
12 13
  agree_car : A;
  agree_with : list A;
Robbert Krebbers's avatar
Robbert Krebbers committed
14
}.
Ralf Jung's avatar
Ralf Jung committed
15 16 17 18 19 20 21 22 23 24
Arguments Agree {_} _ _.
Arguments agree_car {_} _.
Arguments agree_with {_} _.

(* Some theory about set-inclusion on lists and lists of which all elements are equal.
   TODO: Move this elsewhere. *)
Definition list_setincl `(R : relation A) (al bl : list A) :=
   a, a  al   b, b  bl  R a b.
Definition list_setequiv `(R : relation A) (al bl : list A) :=
  list_setincl R al bl  list_setincl R bl al.
25 26 27
(* list_agrees is carefully written such that, when applied to a
   singleton, it is convertible to True. This makes working with
   agreement much more pleasant. *)
Ralf Jung's avatar
Ralf Jung committed
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
Definition list_agrees `(R : relation A) (al : list A) :=
  match al with
  | [] => True
  | [a] => True
  | a :: al =>  b, b  al  R a b
  end.

Lemma list_agrees_alt `(R : relation A) `{Equivalence _ R} al :
  list_agrees R al  ( a b, a  al  b  al  R a b).
Proof.
  destruct al as [|a [|b al]].
  - split; last done. intros _ ? ? []%elem_of_nil.
  - split; last done. intros _ ? ? ->%elem_of_list_singleton ->%elem_of_list_singleton. done.
  - simpl. split.
    + intros Hl a' b' [->|Ha']%elem_of_cons.
      * intros [->|Hb']%elem_of_cons; first done. auto.
      * intros [->|Hb']%elem_of_cons; first by (symmetry; auto).
        trans a; last by auto. symmetry. auto.
    + intros Hl b' Hb'. apply Hl; set_solver.
Qed.

Section list_theory.
  Context `(R: relation A) `{Equivalence A R}.

  Global Instance: PreOrder (list_setincl R).
  Proof.
    split.
    - intros al a Ha. set_solver.
    - intros al bl cl Hab Hbc a Ha. destruct (Hab _ Ha) as (b & Hb & Rab).
      destruct (Hbc _ Hb) as (c & Hc & Rbc). exists c. split; first done.
      by trans b.
  Qed.

  Global Instance: Equivalence (list_setequiv R).
  Proof.
    split.
    - by split.
    - intros ?? [??]. split; auto.
    - intros ??? [??] [??]. split; etrans; done.
  Qed.

  Global Instance list_setincl_subrel `(R' : relation A) :
    subrelation R R'  subrelation (list_setincl R) (list_setincl R').
  Proof.
    intros HRR' al bl Hab. intros a Ha. destruct (Hab _ Ha) as (b & Hb & HR).
    exists b. split; first done. exact: HRR'.
  Qed.

  Global Instance list_setequiv_subrel `(R' : relation A) :
    subrelation R R'  subrelation (list_setequiv R) (list_setequiv R').
  Proof. intros HRR' ?? [??]. split; exact: list_setincl_subrel. Qed. 

  Global Instance list_setincl_perm : subrelation () (list_setincl R).
  Proof.
    intros al bl Hab a Ha. exists a. split; last done.
    by rewrite -Hab.
  Qed.

  Global Instance list_setincl_app l :
    Proper (list_setincl R ==> list_setincl R) (app l).
  Proof.
    intros al bl Hab a [Ha|Ha]%elem_of_app.
    - exists a. split; last done. apply elem_of_app. by left.
    - destruct (Hab _ Ha) as (b & Hb & HR). exists b. split; last done.
      apply elem_of_app. by right.
  Qed.

  Global Instance list_setequiv_app l :
    Proper (list_setequiv R ==> list_setequiv R) (app l).
  Proof. intros al bl [??]. split; apply list_setincl_app; done. Qed.

  Global Instance: subrelation () (flip (list_setincl R)).
  Proof. intros ???. apply list_setincl_perm. done. Qed.

  Global Instance list_agrees_setincl :
    Proper (flip (list_setincl R) ==> impl) (list_agrees R).
  Proof.
    move=> al bl /= Hab /list_agrees_alt Hal. apply (list_agrees_alt _) => a b Ha Hb.
    destruct (Hab _ Ha) as (a' & Ha' & HRa).
    destruct (Hab _ Hb) as (b' & Hb' & HRb).
    trans a'; first done. etrans; last done.
    eapply Hal; done.
  Qed.

  Global Instance list_agrees_setequiv :
    Proper (list_setequiv R ==> iff) (list_agrees R).
  Proof.
    intros ?? [??]. split; by apply: list_agrees_setincl.
  Qed.

  Lemma list_setincl_contains al bl :
    ( x, x  al  x  bl)  list_setincl R al bl.
  Proof. intros Hin a Ha. exists a. split; last done. naive_solver. Qed.

  Lemma list_setequiv_equiv al bl :
    ( x, x  al  x  bl)  list_setequiv R al bl.
  Proof.
    intros Hin. split; apply list_setincl_contains; naive_solver.
  Qed.

  Lemma list_agrees_contains al bl :
    ( x, x  bl  x  al) 
    list_agrees R al  list_agrees R bl.
  Proof. intros ?. by eapply (list_agrees_setincl _),list_setincl_contains. Qed.

  Lemma list_agrees_equiv al bl :
    ( x, x  bl  x  al) 
    list_agrees R al  list_agrees R bl.
  Proof. intros ?. by eapply (list_agrees_setequiv _), list_setequiv_equiv. Qed.

  Lemma list_setincl_singleton a b :
    R a b  list_setincl R [a] [b].
  Proof.
    intros HR c ->%elem_of_list_singleton. exists b. split; last done.
    apply elem_of_list_singleton. done.
  Qed.

  Lemma list_setincl_singleton_rev a b :
    list_setincl R [a] [b]  R a b.
  Proof.
    intros Hl. destruct (Hl a) as (? & ->%elem_of_list_singleton & HR); last done.
    by apply elem_of_list_singleton.
  Qed.

  Lemma list_setequiv_singleton a b :
    R a b  list_setequiv R [a] [b].
  Proof. intros ?. split; by apply list_setincl_singleton. Qed.

  Lemma list_agrees_iff_setincl al a :
    a  al  list_agrees R al  list_setincl R al [a].
  Proof.
    intros Hin. split.
    - move=>/list_agrees_alt Hl b Hb. exists a. split; first set_solver+. exact: Hl.
    - intros Hl. apply (list_agrees_alt _)=> b c Hb Hc.
      destruct (Hl _ Hb) as (? & ->%elem_of_list_singleton & ?).
      destruct (Hl _ Hc) as (? & ->%elem_of_list_singleton & ?).
      by trans a.
  Qed.

  Lemma list_setincl_singleton_in al a :
    a  al  list_setincl R [a] al.
  Proof.
    intros Hin b ->%elem_of_list_singleton. exists a. split; done.
  Qed.

  Global Instance list_setincl_ext : subrelation (Forall2 R) (list_setincl R).
  Proof.
    move=>al bl. induction 1.
    - intros ? []%elem_of_nil.
    - intros a [->|Ha]%elem_of_cons.
      + eexists. split; first constructor. done.
      + destruct (IHForall2 _ Ha) as (b & ? & ?).
        exists b. split; first by constructor. done.
  Qed.

  Global Instance list_setequiv_ext : subrelation (Forall2 R) (list_setequiv R).
  Proof.
    move=>al bl ?. split; apply list_setincl_ext; done.
  Qed.

  Lemma list_agrees_subrel `(R' : relation A) `{Equivalence _ R'} :
    subrelation R R'   l, list_agrees R l  list_agrees R' l.
  Proof. move=> HR l /list_agrees_alt Hl. apply (list_agrees_alt _)=> a b Ha Hb. by apply HR, Hl. Qed.

  Section fmap.
    Context `(R' : relation B) (f : A  B) {Hf: Proper (R ==> R') f}.
    
    Global Instance list_setincl_fmap :
      Proper (list_setincl R ==> list_setincl R') (fmap f).
    Proof.
      intros al bl Hab a' (a & -> & Ha)%elem_of_list_fmap.
      destruct (Hab _ Ha) as (b & Hb & HR). exists (f b).
      split; first eapply elem_of_list_fmap; eauto.
    Qed.
    
    Global Instance list_setequiv_fmap :
      Proper (list_setequiv R ==> list_setequiv R') (fmap f).
    Proof. intros ?? [??]. split; apply list_setincl_fmap; done. Qed.

    Lemma list_agrees_fmap `{Equivalence _ R'} al :
      list_agrees R al  list_agrees R' (f <$> al).
    Proof.
      move=> /list_agrees_alt Hl. apply <-(list_agrees_alt R')=> a' b'.
      intros (a & -> & Ha)%elem_of_list_fmap (b & -> & Hb)%elem_of_list_fmap.
      apply Hf. exact: Hl.
    Qed.
      
  End fmap.

End list_theory.
Robbert Krebbers's avatar
Robbert Krebbers committed
218 219

Section agree.
220
Context {A : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
221

Ralf Jung's avatar
Ralf Jung committed
222
Definition agree_list (x : agree A) := agree_car x :: agree_with x.
223

Ralf Jung's avatar
Ralf Jung committed
224 225 226 227
Instance agree_validN : ValidN (agree A) := λ n x,
  list_agrees (dist n) (agree_list x).
Instance agree_valid : Valid (agree A) := λ x,
  list_agrees (equiv) (agree_list x).
228

229
Instance agree_dist : Dist (agree A) := λ n x y,
Ralf Jung's avatar
Ralf Jung committed
230 231 232 233 234 235 236
  list_setequiv (dist n) (agree_list x) (agree_list y).
Instance agree_equiv : Equiv (agree A) := λ x y,
   n, list_setequiv (dist n) (agree_list x) (agree_list y).

Definition agree_dist_incl n (x y : agree A) :=
  list_setincl (dist n) (agree_list x) (agree_list y).

237
Definition agree_ofe_mixin : OfeMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
238 239
Proof.
  split.
Ralf Jung's avatar
Ralf Jung committed
240 241 242 243 244 245
  - intros x y; split; intros Hxy; done.
  - split; rewrite /dist /agree_dist; intros ? *.
    + reflexivity.
    + by symmetry.
    + intros. etrans; eassumption.
  - intros ???. apply list_setequiv_subrel=>??. apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
246
Qed.
247 248
Canonical Structure agreeC := OfeT (agree A) agree_ofe_mixin.

249
Program Instance agree_op : Op (agree A) := λ x y,
250
  {| agree_car := agree_car x;
Ralf Jung's avatar
Ralf Jung committed
251
     agree_with := agree_with x ++ agree_car y :: agree_with y |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
252
Instance agree_pcore : PCore (agree A) := Some.
253

254
Instance: Comm () (@op (agree A) _).
Ralf Jung's avatar
Ralf Jung committed
255 256
Proof. intros x y n. apply: list_setequiv_equiv. set_solver. Qed.

Ralf Jung's avatar
...  
Ralf Jung committed
257
Lemma agree_idemp (x : agree A) : x  x  x.
Ralf Jung's avatar
Ralf Jung committed
258 259
Proof. intros n. apply: list_setequiv_equiv. set_solver. Qed.

260 261
Instance:  n : nat, Proper (dist n ==> impl) (@validN (agree A) _ n).
Proof.
Ralf Jung's avatar
Ralf Jung committed
262 263
  intros n x y. rewrite /dist /validN /agree_dist /agree_validN.
  by intros ->.
264
Qed.
Ralf Jung's avatar
Ralf Jung committed
265 266 267 268 269 270
Instance:  n : nat, Proper (equiv ==> iff) (@validN (agree A) _ n).
Proof.
  intros n ???. assert (x {n} y) as Hxy by by apply equiv_dist.
  split; rewrite Hxy; done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
271 272
Instance:  x : agree A, Proper (dist n ==> dist n) (op x).
Proof.
Ralf Jung's avatar
Ralf Jung committed
273 274
  intros n x y1 y2. rewrite /dist /agree_dist /agree_list /=. 
  rewrite !app_comm_cons. apply: list_setequiv_app.
Robbert Krebbers's avatar
Robbert Krebbers committed
275
Qed.
276
Instance: Proper (dist n ==> dist n ==> dist n) (@op (agree A) _).
277
Proof. by intros n x1 x2 Hx y1 y2 Hy; rewrite Hy !(comm _ _ y2) Hx. Qed.
278
Instance: Proper (() ==> () ==> ()) op := ne_proper_2 _.
279
Instance: Assoc () (@op (agree A) _).
Ralf Jung's avatar
Ralf Jung committed
280
Proof. intros x y z n. apply: list_setequiv_equiv. set_solver. Qed.
281

Robbert Krebbers's avatar
Robbert Krebbers committed
282 283 284 285 286
Lemma agree_included (x y : agree A) : x  y  y  x  y.
Proof.
  split; [|by intros ?; exists y].
  by intros [z Hz]; rewrite Hz assoc agree_idemp.
Qed.
Ralf Jung's avatar
Ralf Jung committed
287 288 289 290 291 292 293 294 295 296 297 298
Lemma agree_op_inv_inclN n x1 x2 : {n} (x1  x2)  agree_dist_incl n x1 x2.
Proof.
  rewrite /validN /= => /list_agrees_alt Hv a /elem_of_cons Ha. exists (agree_car x2).
  split; first by constructor. eapply Hv.
  - simpl. destruct Ha as [->|Ha]; set_solver.
  - simpl. set_solver+.
Qed.
Lemma agree_op_invN n (x1 x2 : agree A) : {n} (x1  x2)  x1 {n} x2.
Proof.
  intros Hxy. split; apply agree_op_inv_inclN; first done. by rewrite comm.
Qed.

299 300 301
Lemma agree_valid_includedN n (x y : agree A) : {n} y  x {n} y  x {n} y.
Proof.
  move=> Hval [z Hy]; move: Hval; rewrite Hy.
Ralf Jung's avatar
Ralf Jung committed
302
  by move=> /agree_op_invN->; rewrite agree_idemp.
303 304
Qed.

305
Definition agree_cmra_mixin : CMRAMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
306
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
307
  apply cmra_total_mixin; try apply _ || by eauto.
Ralf Jung's avatar
Ralf Jung committed
308 309 310 311 312 313
  - move=>x. split.
    + move=>/list_agrees_alt Hx n. apply (list_agrees_alt _)=> a b Ha Hb.
      apply equiv_dist, Hx; done.
    + intros Hx. apply (list_agrees_alt _)=> a b Ha Hb.
      apply equiv_dist=>n. eapply (list_agrees_alt _); first (by apply Hx); done.
  - intros n x. apply (list_agrees_subrel _ _)=>??. apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
314
  - intros x. apply agree_idemp.
Ralf Jung's avatar
Ralf Jung committed
315
  - intros ??? Hl. apply: list_agrees_contains Hl. set_solver.
316
  - intros n x y1 y2 Hval Hx; exists x, x; simpl; split.
317
    + by rewrite agree_idemp.
Ralf Jung's avatar
Ralf Jung committed
318
    + by move: Hval; rewrite Hx; move=> /agree_op_invN->; rewrite agree_idemp.
Robbert Krebbers's avatar
Robbert Krebbers committed
319
Qed.
320
Canonical Structure agreeR : cmraT :=
321
  CMRAT (agree A) agree_ofe_mixin agree_cmra_mixin.
322

Robbert Krebbers's avatar
Robbert Krebbers committed
323 324
Global Instance agree_total : CMRATotal agreeR.
Proof. rewrite /CMRATotal; eauto. Qed.
325
Global Instance agree_persistent (x : agree A) : Persistent x.
Robbert Krebbers's avatar
Robbert Krebbers committed
326
Proof. by constructor. Qed.
327

Ralf Jung's avatar
Ralf Jung committed
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
Lemma agree_op_inv (x1 x2 : agree A) :  (x1  x2)  x1  x2.
Proof.
  intros ?. apply equiv_dist=>n. by apply agree_op_invN, cmra_valid_validN.
Qed.

Global Instance agree_discrete :
  Discrete A  CMRADiscrete agreeR.
Proof.
  intros HD. split.
  - intros x y Hxy n. eapply list_setequiv_subrel; last exact Hxy. clear -HD.
    intros x y ?. apply equiv_dist, HD. done.
  - rewrite /valid /cmra_valid /agree_valid /validN /cmra_validN /agree_validN /=.
    move=> x. apply (list_agrees_subrel _ _). clear -HD.
    intros x y. apply HD.
Qed.

Definition to_agree (x : A) : agree A :=
  {| agree_car := x; agree_with := [] |}.
346

Robbert Krebbers's avatar
Robbert Krebbers committed
347
Global Instance to_agree_ne n : Proper (dist n ==> dist n) to_agree.
Ralf Jung's avatar
Ralf Jung committed
348 349 350 351
Proof.
  intros x1 x2 Hx; rewrite /= /dist /agree_dist /=.
  exact: list_setequiv_singleton.
Qed.
352
Global Instance to_agree_proper : Proper (() ==> ()) to_agree := ne_proper _.
353

Ralf Jung's avatar
Ralf Jung committed
354 355 356 357 358 359
Global Instance to_agree_injN n : Inj (dist n) (dist n) (to_agree).
Proof. intros a b [Hxy%list_setincl_singleton_rev _]. done. Qed. 
Global Instance to_agree_inj : Inj () () (to_agree).
Proof.
  intros a b ?. apply equiv_dist=>n. apply to_agree_injN. by apply equiv_dist.
Qed.
360

361
Lemma to_agree_uninjN n (x : agree A) : {n} x   y : A, to_agree y {n} x.
362
Proof.
Ralf Jung's avatar
Ralf Jung committed
363 364 365 366 367 368
  intros Hl. exists (agree_car x). rewrite /dist /agree_dist /=.
  split.
  - apply: list_setincl_singleton_in. set_solver+.
  - apply (list_agrees_iff_setincl _); first set_solver+. done.
Qed.

369 370 371 372 373 374 375 376 377 378
Lemma to_agree_uninj (x : agree A) :  x   y : A, to_agree y  x.
Proof.
  intros Hl. exists (agree_car x). rewrite /dist /agree_dist /=.
  split.
  - apply: list_setincl_singleton_in. set_solver+.
  - apply (list_agrees_iff_setincl _); first set_solver+.
    eapply list_agrees_subrel; last exact: Hl; [apply _..|].
    intros ???. by apply equiv_dist.
Qed.

Ralf Jung's avatar
Ralf Jung committed
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
Lemma to_agree_included (a b : A) : to_agree a  to_agree b  a  b.
Proof.
  split.
  - intros (x & Heq). apply equiv_dist=>n. destruct (Heq n) as [_ Hincl].
    (* TODO: This could become a generic lemma about list_setincl. *)
    destruct (Hincl a) as (? & ->%elem_of_list_singleton & ?); first set_solver+.
    done.
  - intros Hab. rewrite Hab. eexists. symmetry. eapply agree_idemp.
Qed.

Lemma to_agree_comp_valid (a b : A) :  (to_agree a  to_agree b)  a  b.
Proof.
  split.
  - (* TODO: can this be derived from other stuff?  Otherwise, should probably become sth. generic about list_agrees. *)
    intros Hv. apply Hv; simpl; set_solver.
  - intros ->. rewrite agree_idemp. done.
395
Qed.
396 397

(** Internalized properties *)
398
Lemma agree_equivI {M} a b : to_agree a  to_agree b  (a  b : uPred M).
399
Proof.
Ralf Jung's avatar
Ralf Jung committed
400 401 402
  uPred.unseal. do 2 split.
  - intros Hx. exact: to_agree_injN.
  - intros Hx. exact: to_agree_ne.
403
Qed.
404
Lemma agree_validI {M} x y :  (x  y)  (x  y : uPred M).
Ralf Jung's avatar
Ralf Jung committed
405
Proof. uPred.unseal; split=> r n _ ?; by apply: agree_op_invN. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
406 407
End agree.

408
Arguments agreeC : clear implicits.
409
Arguments agreeR : clear implicits.
410

411
Program Definition agree_map {A B} (f : A  B) (x : agree A) : agree B :=
Ralf Jung's avatar
Ralf Jung committed
412
  {| agree_car := f (agree_car x); agree_with := f <$> (agree_with x) |}.
413
Lemma agree_map_id {A} (x : agree A) : agree_map id x = x.
Ralf Jung's avatar
Ralf Jung committed
414
Proof. rewrite /agree_map /= list_fmap_id. by destruct x. Qed.
415 416
Lemma agree_map_compose {A B C} (f : A  B) (g : B  C) (x : agree A) :
  agree_map (g  f) x = agree_map g (agree_map f x).
Ralf Jung's avatar
Ralf Jung committed
417
Proof. rewrite /agree_map /= list_fmap_compose. done. Qed.
418

Robbert Krebbers's avatar
Robbert Krebbers committed
419
Section agree_map.
420
  Context {A B : ofeT} (f : A  B) `{Hf:  n, Proper (dist n ==> dist n) f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
421
  Instance agree_map_ne n : Proper (dist n ==> dist n) (agree_map f).
Ralf Jung's avatar
Ralf Jung committed
422 423 424 425 426
  Proof.
    intros x y Hxy.
    change (list_setequiv (dist n)(f <$> (agree_list x))(f <$> (agree_list y))).
    eapply list_setequiv_fmap; last exact Hxy. apply _. 
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
  Instance agree_map_proper : Proper (() ==> ()) (agree_map f) := ne_proper _.
Ralf Jung's avatar
Ralf Jung committed
428

429 430
  Lemma agree_map_ext (g : A  B) x :
    ( x, f x  g x)  agree_map f x  agree_map g x.
Ralf Jung's avatar
Ralf Jung committed
431 432 433 434 435 436
  Proof.
    intros Hfg n. apply: list_setequiv_ext.
    change (f <$> (agree_list x) {n} g <$> (agree_list x)).
    apply list_fmap_ext_ne=>y. by apply equiv_dist.
  Qed.

437
  Global Instance agree_map_monotone : CMRAMonotone (agree_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
438
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
439
    split; first apply _.
Ralf Jung's avatar
Ralf Jung committed
440 441 442
    - intros n x. rewrite /cmra_validN /validN /= /agree_validN /= => ?.
      change (list_agrees (dist n) (f <$> agree_list x)).
      eapply (list_agrees_fmap _ _ _); done.
Robbert Krebbers's avatar
Robbert Krebbers committed
443
    - intros x y; rewrite !agree_included=> ->.
Ralf Jung's avatar
Ralf Jung committed
444 445
      rewrite /equiv /agree_equiv /agree_map /agree_op /agree_list /=.
      rewrite !fmap_app=>n. apply: list_setequiv_equiv. set_solver+.
Robbert Krebbers's avatar
Robbert Krebbers committed
446 447
  Qed.
End agree_map.
Robbert Krebbers's avatar
Robbert Krebbers committed
448

449 450 451
Definition agreeC_map {A B} (f : A -n> B) : agreeC A -n> agreeC B :=
  CofeMor (agree_map f : agreeC A  agreeC B).
Instance agreeC_map_ne A B n : Proper (dist n ==> dist n) (@agreeC_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
452
Proof.
Ralf Jung's avatar
Ralf Jung committed
453 454 455
  intros f g Hfg x. apply: list_setequiv_ext.
  change (f <$> (agree_list x) {n} g <$> (agree_list x)).
  apply list_fmap_ext_ne. done.
Robbert Krebbers's avatar
Robbert Krebbers committed
456
Qed.
Ralf Jung's avatar
Ralf Jung committed
457

458 459 460 461
Program Definition agreeRF (F : cFunctor) : rFunctor := {|
  rFunctor_car A B := agreeR (cFunctor_car F A B);
  rFunctor_map A1 A2 B1 B2 fg := agreeC_map (cFunctor_map F fg)
|}.
462 463 464
Next Obligation.
  intros ? A1 A2 B1 B2 n ???; simpl. by apply agreeC_map_ne, cFunctor_ne.
Qed.
465 466 467 468 469 470 471 472
Next Obligation.
  intros F A B x; simpl. rewrite -{2}(agree_map_id x).
  apply agree_map_ext=>y. by rewrite cFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x; simpl. rewrite -agree_map_compose.
  apply agree_map_ext=>y; apply cFunctor_compose.
Qed.
473 474 475 476 477 478 479

Instance agreeRF_contractive F :
  cFunctorContractive F  rFunctorContractive (agreeRF F).
Proof.
  intros ? A1 A2 B1 B2 n ???; simpl.
  by apply agreeC_map_ne, cFunctor_contractive.
Qed.