csum.v 15 KB
Newer Older
1
From iris.algebra Require Export cmra.
2 3
From iris.base_logic Require Import base_logic.
From iris.algebra Require Import local_updates.
4
Set Default Proof Using "Type".
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
5 6 7 8 9 10 11 12
Local Arguments pcore _ _ !_ /.
Local Arguments cmra_pcore _ !_ /.
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Local Arguments cmra_validN _ _ !_ /.
Local Arguments cmra_valid _  !_ /.

Inductive csum (A B : Type) :=
13 14 15
  | Cinl : A  csum A B
  | Cinr : B  csum A B
  | CsumBot : csum A B.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
16 17 18 19
Arguments Cinl {_ _} _.
Arguments Cinr {_ _} _.
Arguments CsumBot {_ _}.

20 21 22 23
Instance: Params (@Cinl) 2.
Instance: Params (@Cinr) 2.
Instance: Params (@CsumBot) 2.

Robbert Krebbers's avatar
Robbert Krebbers committed
24 25 26 27 28
Instance maybe_Cinl {A B} : Maybe (@Cinl A B) := λ x,
  match x with Cinl a => Some a | _ => None end.
Instance maybe_Cinr {A B} : Maybe (@Cinr A B) := λ x,
  match x with Cinr b => Some b | _ => None end.

Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
29
Section cofe.
30
Context {A B : ofeT}.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
31 32 33 34 35
Implicit Types a : A.
Implicit Types b : B.

(* Cofe *)
Inductive csum_equiv : Equiv (csum A B) :=
36
  | Cinl_equiv a a' : a  a'  Cinl a  Cinl a'
Jacques-Henri Jourdan's avatar
Typo.  
Jacques-Henri Jourdan committed
37
  | Cinr_equiv b b' : b  b'  Cinr b  Cinr b'
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
38 39 40
  | CsumBot_equiv : CsumBot  CsumBot.
Existing Instance csum_equiv.
Inductive csum_dist : Dist (csum A B) :=
41
  | Cinl_dist n a a' : a {n} a'  Cinl a {n} Cinl a'
Jacques-Henri Jourdan's avatar
Typo.  
Jacques-Henri Jourdan committed
42
  | Cinr_dist n b b' : b {n} b'  Cinr b {n} Cinr b'
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
43 44 45
  | CsumBot_dist n : CsumBot {n} CsumBot.
Existing Instance csum_dist.

46
Global Instance Cinl_ne : NonExpansive (@Cinl A B).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
47 48 49 50 51 52 53
Proof. by constructor. Qed.
Global Instance Cinl_proper : Proper (() ==> ()) (@Cinl A B).
Proof. by constructor. Qed.
Global Instance Cinl_inj : Inj () () (@Cinl A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinl_inj_dist n : Inj (dist n) (dist n) (@Cinl A B).
Proof. by inversion_clear 1. Qed.
54
Global Instance Cinr_ne : NonExpansive (@Cinr A B).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
55 56 57 58 59 60 61 62
Proof. by constructor. Qed.
Global Instance Cinr_proper : Proper (() ==> ()) (@Cinr A B).
Proof. by constructor. Qed.
Global Instance Cinr_inj : Inj () () (@Cinr A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinr_inj_dist n : Inj (dist n) (dist n) (@Cinr A B).
Proof. by inversion_clear 1. Qed.

63
Definition csum_ofe_mixin : OfeMixin (csum A B).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
64 65 66 67 68 69 70 71 72 73 74 75
Proof.
  split.
  - intros mx my; split.
    + by destruct 1; constructor; try apply equiv_dist.
    + intros Hxy; feed inversion (Hxy 0); subst; constructor; try done;
      apply equiv_dist=> n; by feed inversion (Hxy n).
  - intros n; split.
    + by intros [|a|]; constructor.
    + by destruct 1; constructor.
    + destruct 1; inversion_clear 1; constructor; etrans; eauto.
  - by inversion_clear 1; constructor; apply dist_S.
Qed.
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
Canonical Structure csumC : ofeT := OfeT (csum A B) csum_ofe_mixin.

Program Definition csum_chain_l (c : chain csumC) (a : A) : chain A :=
  {| chain_car n := match c n return _ with Cinl a' => a' | _ => a end |}.
Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
Program Definition csum_chain_r (c : chain csumC) (b : B) : chain B :=
  {| chain_car n := match c n return _ with Cinr b' => b' | _ => b end |}.
Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
Definition csum_compl `{Cofe A, Cofe B} : Compl csumC := λ c,
  match c 0 with
  | Cinl a => Cinl (compl (csum_chain_l c a))
  | Cinr b => Cinr (compl (csum_chain_r c b))
  | CsumBot => CsumBot
  end.
Global Program Instance csum_cofe `{Cofe A, Cofe B} : Cofe csumC :=
  {| compl := csum_compl |}.
Next Obligation.
  intros ?? n c; rewrite /compl /csum_compl.
  feed inversion (chain_cauchy c 0 n); first auto with lia; constructor.
  + rewrite (conv_compl n (csum_chain_l c a')) /=. destruct (c n); naive_solver.
  + rewrite (conv_compl n (csum_chain_r c b')) /=. destruct (c n); naive_solver.
Qed.

99
Global Instance csum_ofe_discrete : OFEDiscrete A  OFEDiscrete B  OFEDiscrete csumC.
100
Proof. by inversion_clear 3; constructor; apply (discrete _). Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
101 102 103 104
Global Instance csum_leibniz :
  LeibnizEquiv A  LeibnizEquiv B  LeibnizEquiv (csumC A B).
Proof. by destruct 3; f_equal; apply leibniz_equiv. Qed.

105 106 107 108
Global Instance Cinl_discrete a : Discrete a  Discrete (Cinl a).
Proof. by inversion_clear 2; constructor; apply (discrete _). Qed.
Global Instance Cinr_discrete b : Discrete b  Discrete (Cinr b).
Proof. by inversion_clear 2; constructor; apply (discrete _). Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
End cofe.

Arguments csumC : clear implicits.

(* Functor on COFEs *)
Definition csum_map {A A' B B'} (fA : A  A') (fB : B  B')
                    (x : csum A B) : csum A' B' :=
  match x with
  | Cinl a => Cinl (fA a)
  | Cinr b => Cinr (fB b)
  | CsumBot => CsumBot
  end.
Instance: Params (@csum_map) 4.

Lemma csum_map_id {A B} (x : csum A B) : csum_map id id x = x.
Proof. by destruct x. Qed.
Lemma csum_map_compose {A A' A'' B B' B''} (f : A  A') (f' : A'  A'')
                       (g : B  B') (g' : B'  B'') (x : csum A B) :
  csum_map (f'  f) (g'  g) x = csum_map f' g' (csum_map f g x).
Proof. by destruct x. Qed.
129
Lemma csum_map_ext {A A' B B' : ofeT} (f f' : A  A') (g g' : B  B') x :
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
130 131
  ( x, f x  f' x)  ( x, g x  g' x)  csum_map f g x  csum_map f' g' x.
Proof. by destruct x; constructor. Qed.
132
Instance csum_map_cmra_ne {A A' B B' : ofeT} n :
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
133 134 135 136 137 138
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==> dist n ==> dist n)
         (@csum_map A A' B B').
Proof. intros f f' Hf g g' Hg []; destruct 1; constructor; by apply Hf || apply Hg. Qed.
Definition csumC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  csumC A B -n> csumC A' B' :=
  CofeMor (csum_map f g).
139 140 141
Instance csumC_map_ne A A' B B' :
  NonExpansive2 (@csumC_map A A' B B').
Proof. by intros n f f' Hf g g' Hg []; constructor. Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

Section cmra.
Context {A B : cmraT}.
Implicit Types a : A.
Implicit Types b : B.

(* CMRA *)
Instance csum_valid : Valid (csum A B) := λ x,
  match x with
  | Cinl a =>  a
  | Cinr b =>  b
  | CsumBot => False
  end.
Instance csum_validN : ValidN (csum A B) := λ n x,
  match x with
  | Cinl a => {n} a
  | Cinr b => {n} b
  | CsumBot => False
  end.
Instance csum_pcore : PCore (csum A B) := λ x,
  match x with
  | Cinl a => Cinl <$> pcore a
  | Cinr b => Cinr <$> pcore b
  | CsumBot => Some CsumBot
  end.
Instance csum_op : Op (csum A B) := λ x y,
  match x, y with
  | Cinl a, Cinl a' => Cinl (a  a')
  | Cinr b, Cinr b' => Cinr (b  b')
  | _, _ => CsumBot
  end.

Lemma Cinl_op a a' : Cinl a  Cinl a' = Cinl (a  a').
Proof. done. Qed.
Lemma Cinr_op b b' : Cinr b  Cinr b' = Cinr (b  b').
Proof. done. Qed.

Lemma csum_included x y :
  x  y  y = CsumBot  ( a a', x = Cinl a  y = Cinl a'  a  a')
                       ( b b', x = Cinr b  y = Cinr b'  b  b').
Proof.
  split.
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  - unfold included. intros [[a'|b'|] Hy]; destruct x as [a|b|];
      inversion_clear Hy; eauto 10.
  - intros [->|[(a&a'&->&->&c&?)|(b&b'&->&->&c&?)]].
    + destruct x; exists CsumBot; constructor.
    + exists (Cinl c); by constructor.
    + exists (Cinr c); by constructor.
Qed.

Lemma csum_includedN n x y :
  x {n} y  y = CsumBot  ( a a', x = Cinl a  y = Cinl a'  a {n} a')
                          ( b b', x = Cinr b  y = Cinr b'  b {n} b').
Proof.
  split.
  - unfold includedN. intros [[a'|b'|] Hy]; destruct x as [a|b|];
      inversion_clear Hy; eauto 10.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
199 200 201 202 203 204 205 206 207
  - intros [->|[(a&a'&->&->&c&?)|(b&b'&->&->&c&?)]].
    + destruct x; exists CsumBot; constructor.
    + exists (Cinl c); by constructor.
    + exists (Cinr c); by constructor.
Qed.

Lemma csum_cmra_mixin : CMRAMixin (csum A B).
Proof.
  split.
208
  - intros [] n; destruct 1; constructor; by ofe_subst.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
209 210 211 212 213 214 215
  - intros ???? [n a a' Ha|n b b' Hb|n] [=]; subst; eauto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_ne n a a' ca) as (ca'&->&?); auto.
      exists (Cinl ca'); by repeat constructor.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_ne n b b' cb) as (cb'&->&?); auto.
      exists (Cinr cb'); by repeat constructor.
216
  - intros ? [a|b|] [a'|b'|] H; inversion_clear H; ofe_subst; done.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
  - intros [a|b|]; rewrite /= ?cmra_valid_validN; naive_solver eauto using O.
  - intros n [a|b|]; simpl; auto using cmra_validN_S.
  - intros [a1|b1|] [a2|b2|] [a3|b3|]; constructor; by rewrite ?assoc.
  - intros [a1|b1|] [a2|b2|]; constructor; by rewrite 1?comm.
  - intros [a|b|] ? [=]; subst; auto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      constructor; eauto using cmra_pcore_l.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      constructor; eauto using cmra_pcore_l.
  - intros [a|b|] ? [=]; subst; auto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      feed inversion (cmra_pcore_idemp a ca); repeat constructor; auto.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      feed inversion (cmra_pcore_idemp b cb); repeat constructor; auto.
  - intros x y ? [->|[(a&a'&->&->&?)|(b&b'&->&->&?)]]%csum_included [=].
    + exists CsumBot. rewrite csum_included; eauto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
234
      destruct (cmra_pcore_mono a a' ca) as (ca'&->&?); auto.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
235 236
      exists (Cinl ca'). rewrite csum_included; eauto 10.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
237
      destruct (cmra_pcore_mono b b' cb) as (cb'&->&?); auto.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
238 239 240
      exists (Cinr cb'). rewrite csum_included; eauto 10.
  - intros n [a1|b1|] [a2|b2|]; simpl; eauto using cmra_validN_op_l; done.
  - intros n [a|b|] y1 y2 Hx Hx'.
241 242 243 244 245 246 247
    + destruct y1 as [a1|b1|], y2 as [a2|b2|]; inversion_clear Hx'.
      destruct (cmra_extend n a a1 a2) as (z1&z2&?&?&?); auto.
      exists (Cinl z1), (Cinl z2). by repeat constructor.
    + destruct y1 as [a1|b1|], y2 as [a2|b2|]; inversion_clear Hx'.
      destruct (cmra_extend n b b1 b2) as (z1&z2&?&?&?); auto.
      exists (Cinr z1), (Cinr z2). by repeat constructor.
    + by exists CsumBot, CsumBot; destruct y1, y2; inversion_clear Hx'.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
248
Qed.
249
Canonical Structure csumR := CMRAT (csum A B) csum_cmra_mixin.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
250 251 252 253 254 255 256 257 258 259 260 261 262

Global Instance csum_cmra_discrete :
  CMRADiscrete A  CMRADiscrete B  CMRADiscrete csumR.
Proof.
  split; first apply _.
  by move=>[a|b|] HH /=; try apply cmra_discrete_valid.
Qed.

Global Instance Cinl_persistent a : Persistent a  Persistent (Cinl a).
Proof. rewrite /Persistent /=. inversion_clear 1; by repeat constructor. Qed.
Global Instance Cinr_persistent b : Persistent b  Persistent (Cinr b).
Proof. rewrite /Persistent /=. inversion_clear 1; by repeat constructor. Qed.

263
Global Instance Cinl_exclusive a : Exclusive a  Exclusive (Cinl a).
264
Proof. by move=> H[]? =>[/H||]. Qed.
265
Global Instance Cinr_exclusive b : Exclusive b  Exclusive (Cinr b).
266
Proof. by move=> H[]? =>[|/H|]. Qed.
267

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
Global Instance Cinl_cancelable a : Cancelable a  Cancelable (Cinl a).
Proof.
  move=> ?? [y|y|] [z|z|] ? EQ //; inversion_clear EQ.
  constructor. by eapply (cancelableN a).
Qed.
Global Instance Cinr_cancelable b : Cancelable b  Cancelable (Cinr b).
Proof.
  move=> ?? [y|y|] [z|z|] ? EQ //; inversion_clear EQ.
  constructor. by eapply (cancelableN b).
Qed.

Global Instance Cinl_id_free a : IdFree a  IdFree (Cinl a).
Proof. intros ? [] ? EQ; inversion_clear EQ. by eapply id_free0_r. Qed.
Global Instance Cinr_id_free b : IdFree b  IdFree (Cinr b).
Proof. intros ? [] ? EQ; inversion_clear EQ. by eapply id_free0_r. Qed.

Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
284 285
(** Internalized properties *)
Lemma csum_equivI {M} (x y : csum A B) :
286 287 288 289 290 291
  x  y  (match x, y with
            | Cinl a, Cinl a' => a  a'
            | Cinr b, Cinr b' => b  b'
            | CsumBot, CsumBot => True
            | _, _ => False
            end : uPred M).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
292 293 294 295 296
Proof.
  uPred.unseal; do 2 split; first by destruct 1.
  by destruct x, y; try destruct 1; try constructor.
Qed.
Lemma csum_validI {M} (x : csum A B) :
297 298 299 300 301
   x  (match x with
          | Cinl a =>  a
          | Cinr b =>  b
          | CsumBot => False
          end : uPred M).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
Proof. uPred.unseal. by destruct x. Qed.

(** Updates *)
Lemma csum_update_l (a1 a2 : A) : a1 ~~> a2  Cinl a1 ~~> Cinl a2.
Proof.
  intros Ha n [[a|b|]|] ?; simpl in *; auto.
  - by apply (Ha n (Some a)).
  - by apply (Ha n None).
Qed.
Lemma csum_update_r (b1 b2 : B) : b1 ~~> b2  Cinr b1 ~~> Cinr b2.
Proof.
  intros Hb n [[a|b|]|] ?; simpl in *; auto.
  - by apply (Hb n (Some b)).
  - by apply (Hb n None).
Qed.
Lemma csum_updateP_l (P : A  Prop) (Q : csum A B  Prop) a :
  a ~~>: P  ( a', P a'  Q (Cinl a'))  Cinl a ~~>: Q.
Proof.
  intros Hx HP n mf Hm. destruct mf as [[a'|b'|]|]; try by destruct Hm.
  - destruct (Hx n (Some a')) as (c&?&?); naive_solver.
  - destruct (Hx n None) as (c&?&?); naive_solver eauto using cmra_validN_op_l.
Qed.
Lemma csum_updateP_r (P : B  Prop) (Q : csum A B  Prop) b :
  b ~~>: P  ( b', P b'  Q (Cinr b'))  Cinr b  ~~>: Q.
Proof.
  intros Hx HP n mf Hm. destruct mf as [[a'|b'|]|]; try by destruct Hm.
  - destruct (Hx n (Some b')) as (c&?&?); naive_solver.
  - destruct (Hx n None) as (c&?&?); naive_solver eauto using cmra_validN_op_l.
Qed.
Lemma csum_updateP'_l (P : A  Prop) a :
  a ~~>: P  Cinl a ~~>: λ m',  a', m' = Cinl a'  P a'.
Proof. eauto using csum_updateP_l. Qed.
Lemma csum_updateP'_r (P : B  Prop) b :
  b ~~>: P  Cinr b ~~>: λ m',  b', m' = Cinr b'  P b'.
Proof. eauto using csum_updateP_r. Qed.
337 338 339

Lemma csum_local_update_l (a1 a2 a1' a2' : A) :
  (a1,a2) ~l~> (a1',a2')  (Cinl a1,Cinl a2) ~l~> (Cinl a1',Cinl a2').
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
340
Proof.
341 342 343 344
  intros Hup n mf ? Ha1; simpl in *.
  destruct (Hup n (mf = maybe Cinl)); auto.
  { by destruct mf as [[]|]; inversion_clear Ha1. }
  split. done. by destruct mf as [[]|]; inversion_clear Ha1; constructor.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
345
Qed.
346 347
Lemma csum_local_update_r (b1 b2 b1' b2' : B) :
  (b1,b2) ~l~> (b1',b2')  (Cinr b1,Cinr b2) ~l~> (Cinr b1',Cinr b2').
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
348
Proof.
349 350 351 352
  intros Hup n mf ? Ha1; simpl in *.
  destruct (Hup n (mf = maybe Cinr)); auto.
  { by destruct mf as [[]|]; inversion_clear Ha1. }
  split. done. by destruct mf as [[]|]; inversion_clear Ha1; constructor.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
353
Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
354 355 356 357 358
End cmra.

Arguments csumR : clear implicits.

(* Functor *)
359 360
Instance csum_map_cmra_morphism {A A' B B' : cmraT} (f : A  A') (g : B  B') :
  CMRAMorphism f  CMRAMorphism g  CMRAMorphism (csum_map f g).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
361 362
Proof.
  split; try apply _.
363 364 365
  - intros n [a|b|]; simpl; auto using cmra_morphism_validN.
  - move=> [a|b|]=>//=; rewrite cmra_morphism_pcore; by destruct pcore.
  - intros [xa|ya|] [xb|yb|]=>//=; by rewrite -cmra_morphism_op.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
Qed.

Program Definition csumRF (Fa Fb : rFunctor) : rFunctor := {|
  rFunctor_car A B := csumR (rFunctor_car Fa A B) (rFunctor_car Fb A B);
  rFunctor_map A1 A2 B1 B2 fg := csumC_map (rFunctor_map Fa fg) (rFunctor_map Fb fg)
|}.
Next Obligation.
  by intros Fa Fb A1 A2 B1 B2 n f g Hfg; apply csumC_map_ne; try apply rFunctor_ne.
Qed.
Next Obligation.
  intros Fa Fb A B x. rewrite /= -{2}(csum_map_id x).
  apply csum_map_ext=>y; apply rFunctor_id.
Qed.
Next Obligation.
  intros Fa Fb A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -csum_map_compose.
  apply csum_map_ext=>y; apply rFunctor_compose.
Qed.

Instance csumRF_contractive Fa Fb :
  rFunctorContractive Fa  rFunctorContractive Fb 
  rFunctorContractive (csumRF Fa Fb).
Proof.
  by intros ?? A1 A2 B1 B2 n f g Hfg; apply csumC_map_ne; try apply rFunctor_contractive.
Qed.