sts.v 17.9 KB
Newer Older
1
From iris.prelude Require Export set.
2
3
From iris.algebra Require Export cmra.
From iris.algebra Require Import dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
4
5
Local Arguments valid _ _ !_ /.
Local Arguments op _ _ !_ !_ /.
Ralf Jung's avatar
Ralf Jung committed
6
Local Arguments core _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

Robbert Krebbers's avatar
Robbert Krebbers committed
8
(** * Definition of STSs *)
9
Module sts.
10
Structure stsT := STS {
Ralf Jung's avatar
Ralf Jung committed
11
12
  state : Type;
  token : Type;
Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
  prim_step : relation state;
  tok : state  set token;
Ralf Jung's avatar
Ralf Jung committed
15
}.
16
Arguments STS {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
17
18
19
20
Arguments prim_step {_} _ _.
Arguments tok {_} _.
Notation states sts := (set (state sts)).
Notation tokens sts := (set (token sts)).
Ralf Jung's avatar
Ralf Jung committed
21

Robbert Krebbers's avatar
Robbert Krebbers committed
22
23
24
(** * Theory and definitions *)
Section sts.
Context {sts : stsT}.
Ralf Jung's avatar
Ralf Jung committed
25

Robbert Krebbers's avatar
Robbert Krebbers committed
26
27
(** ** Step relations *)
Inductive step : relation (state sts * tokens sts) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
28
  | Step s1 s2 T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
29
     prim_step s1 s2  tok s1  T1  tok s2  T2 
Ralf Jung's avatar
Ralf Jung committed
30
     tok s1  T1  tok s2  T2  step (s1,T1) (s2,T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
31
Notation steps := (rtc step).
Robbert Krebbers's avatar
Robbert Krebbers committed
32
Inductive frame_step (T : tokens sts) (s1 s2 : state sts) : Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  | Frame_step T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
34
     T1  tok s1  T  step (s1,T1) (s2,T2)  frame_step T s1 s2.
Robbert Krebbers's avatar
Robbert Krebbers committed
35
36
37

(** ** Closure under frame steps *)
Record closed (S : states sts) (T : tokens sts) : Prop := Closed {
Robbert Krebbers's avatar
Robbert Krebbers committed
38
  closed_disjoint s : s  S  tok s  T;
Robbert Krebbers's avatar
Robbert Krebbers committed
39
40
  closed_step s1 s2 : s1  S  frame_step T s1 s2  s2  S
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
41
Definition up (s : state sts) (T : tokens sts) : states sts :=
42
  {[ s' | rtc (frame_step T) s s' ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
43
Definition up_set (S : states sts) (T : tokens sts) : states sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
44
  S = λ s, up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
45

Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
(** Tactic setup *)
Hint Resolve Step.
48
49
50
51
Hint Extern 50 (equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (¬equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
52
Hint Extern 50 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
53
54

(** ** Setoids *)
Ralf Jung's avatar
Ralf Jung committed
55
56
57
Instance framestep_mono : Proper (flip () ==> (=) ==> (=) ==> impl) frame_step.
Proof.
  intros ?? HT ?? <- ?? <-; destruct 1; econstructor;
58
    eauto with sts; set_solver.
Ralf Jung's avatar
Ralf Jung committed
59
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
60
Global Instance framestep_proper : Proper (() ==> (=) ==> (=) ==> iff) frame_step.
Ralf Jung's avatar
Ralf Jung committed
61
Proof. by intros ?? [??] ??????; split; apply framestep_mono. Qed.
62
Instance closed_proper' : Proper (() ==> () ==> impl) closed.
Robbert Krebbers's avatar
Robbert Krebbers committed
63
Proof. destruct 3; constructor; intros until 0; setoid_subst; eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
64
Global Instance closed_proper : Proper (() ==> () ==> iff) closed.
65
Proof. by split; apply closed_proper'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
66
Global Instance up_preserving : Proper ((=) ==> flip () ==> ()) up.
Robbert Krebbers's avatar
Robbert Krebbers committed
67
Proof.
68
  intros s ? <- T T' HT ; apply elem_of_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
69
  induction 1 as [|s1 s2 s3 [T1 T2]]; [constructor|].
70
  eapply elem_of_mkSet, rtc_l; [eapply Frame_step with T1 T2|]; eauto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
71
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
Global Instance up_proper : Proper ((=) ==> () ==> ()) up.
73
Proof. by intros ??? ?? [??]; split; apply up_preserving. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
Global Instance up_set_preserving : Proper (() ==> flip () ==> ()) up_set.
Ralf Jung's avatar
Ralf Jung committed
75
76
Proof.
  intros S1 S2 HS T1 T2 HT. rewrite /up_set.
77
  f_equiv; last done. move =>s1 s2 Hs. simpl in HT. by apply up_preserving.
Ralf Jung's avatar
Ralf Jung committed
78
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
79
Global Instance up_set_proper : Proper (() ==> () ==> ()) up_set.
Robbert Krebbers's avatar
Robbert Krebbers committed
80
Proof. by intros S1 S2 [??] T1 T2 [??]; split; apply up_set_preserving. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
81
82
83
84
85
86

(** ** Properties of closure under frame steps *)
Lemma closed_steps S T s1 s2 :
  closed S T  s1  S  rtc (frame_step T) s1 s2  s2  S.
Proof. induction 3; eauto using closed_step. Qed.
Lemma closed_op T1 T2 S1 S2 :
87
  closed S1 T1  closed S2 T2  closed (S1  S2) (T1  T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
88
Proof.
89
  intros [? Hstep1] [? Hstep2]; split; [set_solver|].
Robbert Krebbers's avatar
Robbert Krebbers committed
90
  intros s3 s4; rewrite !elem_of_intersection; intros [??] [T3 T4 ?]; split.
91
92
  - apply Hstep1 with s3, Frame_step with T3 T4; auto with sts.
  - apply Hstep2 with s3, Frame_step with T3 T4; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
93
94
Qed.
Lemma step_closed s1 s2 T1 T2 S Tf :
Robbert Krebbers's avatar
Robbert Krebbers committed
95
96
  step (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf 
  s2  S  T2  Tf  tok s2  T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
97
Proof.
98
  inversion_clear 1 as [???? HR Hs1 Hs2]; intros [? Hstep]??; split_and?; auto.
99
  - eapply Hstep with s1, Frame_step with T1 T2; auto with sts.
100
  - set_solver -Hstep Hs1 Hs2.
Robbert Krebbers's avatar
Robbert Krebbers committed
101
Qed.
102
Lemma steps_closed s1 s2 T1 T2 S Tf :
Robbert Krebbers's avatar
Robbert Krebbers committed
103
104
  steps (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf 
  tok s1  T1  s2  S  T2  Tf  tok s2  T2.
105
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
106
107
108
109
110
  remember (s1,T1) as sT1 eqn:HsT1; remember (s2,T2) as sT2 eqn:HsT2.
  intros Hsteps; revert s1 T1 HsT1 s2 T2 HsT2.
  induction Hsteps as [?|? [s2 T2] ? Hstep Hsteps IH];
     intros s1 T1 HsT1 s2' T2' ?????; simplify_eq; first done.
  destruct (step_closed s1 s2 T1 T2 S Tf) as (?&?&?); eauto.
111
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
112
113

(** ** Properties of the closure operators *)
114
Lemma elem_of_up s T : s  up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
115
Proof. constructor. Qed.
116
Lemma subseteq_up_set S T : S  up_set S T.
Robbert Krebbers's avatar
Robbert Krebbers committed
117
Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed.
Ralf Jung's avatar
Ralf Jung committed
118
119
Lemma up_up_set s T : up s T  up_set {[ s ]} T.
Proof. by rewrite /up_set collection_bind_singleton. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
120
Lemma closed_up_set S T : ( s, s  S  tok s  T)  closed (up_set S T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
121
Proof.
122
  intros HS; unfold up_set; split.
123
  - intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs').
124
    specialize (HS s' Hs'); clear Hs' S.
125
    induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
126
    inversion_clear Hstep; apply IH; clear IH; auto with sts.
127
  - intros s1 s2; rewrite /up; set_unfold; intros (s&?&?) ?; exists s.
Robbert Krebbers's avatar
Robbert Krebbers committed
128
129
    split; [eapply rtc_r|]; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
Lemma closed_up s T : tok s  T  closed (up s T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
131
Proof.
132
  intros; rewrite -(collection_bind_singleton (λ s, up s T) s).
133
  apply closed_up_set; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
134
Qed.
135
136
Lemma closed_up_set_empty S : closed (up_set S ) .
Proof. eauto using closed_up_set with sts. Qed.
137
Lemma closed_up_empty s : closed (up s ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
138
Proof. eauto using closed_up with sts. Qed.
139
Lemma up_set_empty S T : up_set S T    S  .
Robbert Krebbers's avatar
Robbert Krebbers committed
140
141
Proof. move:(subseteq_up_set S T). set_solver. Qed.
Lemma up_set_non_empty S T : S    up_set S T  .
142
Proof. by move=>? /up_set_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
144
Lemma up_non_empty s T : up s T  .
Proof. eapply non_empty_inhabited, elem_of_up. Qed.
145
Lemma up_closed S T : closed S T  up_set S T  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
146
Proof.
147
  intros; split; auto using subseteq_up_set; intros s.
Robbert Krebbers's avatar
Robbert Krebbers committed
148
149
150
  unfold up_set; rewrite elem_of_bind; intros (s'&Hstep&?).
  induction Hstep; eauto using closed_step.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
152
153
154
155
156
157
Lemma up_subseteq s T S : closed S T  s  S  sts.up s T  S.
Proof. move=> ?? s' ?. eauto using closed_steps. Qed.
Lemma up_set_subseteq S1 T S2 : closed S2 T  S1  S2  sts.up_set S1 T  S2.
Proof. move=> ?? s [s' [? ?]]. eauto using closed_steps. Qed.
End sts.

Notation steps := (rtc step).
Robbert Krebbers's avatar
Robbert Krebbers committed
158
159
160
161
162
163
164
165

(* The type of bounds we can give to the state of an STS. This is the type
   that we equip with an RA structure. *)
Inductive car (sts : stsT) :=
  | auth : state sts  set (token sts)  car sts
  | frag : set (state sts)  set (token sts )  car sts.
Arguments auth {_} _ _.
Arguments frag {_} _ _.
166
End sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
167

168
169
170
171
Notation stsT := sts.stsT.
Notation STS := sts.STS.

(** * STSs form a disjoint RA *)
Robbert Krebbers's avatar
Robbert Krebbers committed
172
Section sts_dra.
173
174
Context (sts : stsT).
Import sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
175
176
177
178
179
180
Implicit Types S : states sts.
Implicit Types T : tokens sts.

Inductive sts_equiv : Equiv (car sts) :=
  | auth_equiv s T1 T2 : T1  T2  auth s T1  auth s T2
  | frag_equiv S1 S2 T1 T2 : T1  T2  S1  S2  frag S1 T1  frag S2 T2.
181
182
Existing Instance sts_equiv.
Instance sts_valid : Valid (car sts) := λ x,
183
  match x with
Robbert Krebbers's avatar
Robbert Krebbers committed
184
  | auth s T => tok s  T
Robbert Krebbers's avatar
Robbert Krebbers committed
185
186
  | frag S' T => closed S' T  S'  
  end.
187
Instance sts_core : Core (car sts) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
188
189
190
191
192
193
  match x with
  | frag S' _ => frag (up_set S'  ) 
  | auth s _  => frag (up s ) 
  end.
Inductive sts_disjoint : Disjoint (car sts) :=
  | frag_frag_disjoint S1 S2 T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
194
195
196
     S1  S2    T1  T2  frag S1 T1  frag S2 T2
  | auth_frag_disjoint s S T1 T2 : s  S  T1  T2  auth s T1  frag S T2
  | frag_auth_disjoint s S T1 T2 : s  S  T1  T2  frag S T1  auth s T2.
197
198
Existing Instance sts_disjoint.
Instance sts_op : Op (car sts) := λ x1 x2,
Robbert Krebbers's avatar
Robbert Krebbers committed
199
200
201
202
203
204
205
  match x1, x2 with
  | frag S1 T1, frag S2 T2 => frag (S1  S2) (T1  T2)
  | auth s T1, frag _ T2 => auth s (T1  T2)
  | frag _ T1, auth s T2 => auth s (T1  T2)
  | auth s T1, auth _ T2 => auth s (T1  T2)(* never happens *)
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
206
207
208
209
Hint Extern 50 (equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (¬equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
210
211
Hint Extern 50 (_  _) => set_solver : sts.

212
213
214
215
216
217
Global Instance auth_proper s : Proper (() ==> ()) (@auth sts s).
Proof. by constructor. Qed.
Global Instance frag_proper : Proper (() ==> () ==> ()) (@frag sts).
Proof. by constructor. Qed.

Instance sts_equivalence: Equivalence (() : relation (car sts)).
Robbert Krebbers's avatar
Robbert Krebbers committed
218
219
Proof.
  split.
220
221
  - by intros []; constructor.
  - by destruct 1; constructor.
222
  - destruct 1; inversion_clear 1; constructor; etrans; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
223
Qed.
224
Lemma sts_dra_mixin : DRAMixin (car sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
225
226
Proof.
  split.
227
228
229
230
231
  - apply _.
  - by do 2 destruct 1; constructor; setoid_subst.
  - by destruct 1; constructor; setoid_subst.
  - by destruct 1; simpl; intros ?; setoid_subst.
  - by intros ? [|]; destruct 1; inversion_clear 1; constructor; setoid_subst.
232
  - destruct 3; simpl in *; destruct_and?; eauto using closed_op;
233
      match goal with H : closed _ _ |- _ => destruct H end; set_solver.
234
  - intros []; simpl; intros; destruct_and?; split;
Robbert Krebbers's avatar
Robbert Krebbers committed
235
      eauto using closed_up, up_non_empty, closed_up_set, up_set_empty with sts.
236
237
238
239
240
241
242
243
  - intros [] [] []; constructor; rewrite ?assoc; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 1; constructor; auto with sts.
  - destruct 3; constructor; auto with sts.
  - intros [|S T]; constructor; auto using elem_of_up with sts.
  - intros [|S T]; constructor; auto with sts.
  - intros [s T|S T]; constructor; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
244
    + rewrite (up_closed (up _ _)); auto using closed_up with sts.
245
    + rewrite (up_closed (up_set _ _)); eauto using closed_up_set with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
246
247
248
  - intros x y. exists (core (x  y))=> ?? Hxy; split_and?.
    + destruct Hxy; constructor; unfold up_set; set_solver.
    + destruct Hxy; simpl; split_and?;
Robbert Krebbers's avatar
Robbert Krebbers committed
249
250
        auto using closed_up_set_empty, closed_up_empty, up_non_empty; [].
      apply up_set_non_empty. set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
251
    + destruct Hxy; constructor;
252
        repeat match goal with
253
254
255
256
        | |- context [ up_set ?S ?T ] =>
           unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
        | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
257
        end; auto with sts.
258
Qed.
259
260
Canonical Structure stsDR : draT := DRAT (car sts) sts_dra_mixin.
End sts_dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
261
262
263

(** * The STS Resource Algebra *)
(** Finally, the general theory of STS that should be used by users *)
264
265
Notation stsC sts := (validityC (stsDR sts)).
Notation stsR sts := (validityR (stsDR sts)).
Robbert Krebbers's avatar
Robbert Krebbers committed
266
267
268

Section sts_definitions.
  Context {sts : stsT}.
269
  Definition sts_auth (s : sts.state sts) (T : sts.tokens sts) : stsR sts :=
270
    to_validity (sts.auth s T).
271
  Definition sts_frag (S : sts.states sts) (T : sts.tokens sts) : stsR sts :=
272
    to_validity (sts.frag S T).
273
  Definition sts_frag_up (s : sts.state sts) (T : sts.tokens sts) : stsR sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
274
275
276
277
278
279
280
281
282
283
284
285
    sts_frag (sts.up s T) T.
End sts_definitions.
Instance: Params (@sts_auth) 2.
Instance: Params (@sts_frag) 1.
Instance: Params (@sts_frag_up) 2.

Section stsRA.
Import sts.
Context {sts : stsT}.
Implicit Types s : state sts.
Implicit Types S : states sts.
Implicit Types T : tokens sts.
286
Arguments dra_valid _ !_/.
287

Robbert Krebbers's avatar
Robbert Krebbers committed
288
289
(** Setoids *)
Global Instance sts_auth_proper s : Proper (() ==> ()) (sts_auth s).
290
Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
291
Global Instance sts_frag_proper : Proper (() ==> () ==> ()) (@sts_frag sts).
292
Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
293
Global Instance sts_frag_up_proper s : Proper (() ==> ()) (sts_frag_up s).
294
Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
295

Robbert Krebbers's avatar
Robbert Krebbers committed
296
(** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
297
Lemma sts_auth_valid s T :  sts_auth s T  tok s  T.
298
Proof. done. Qed.
299
Lemma sts_frag_valid S T :  sts_frag S T  closed S T  S  .
300
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
Lemma sts_frag_up_valid s T : tok s  T   sts_frag_up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
302
Proof. intros. by apply sts_frag_valid; auto using closed_up, up_non_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
303

Robbert Krebbers's avatar
Robbert Krebbers committed
304
305
Lemma sts_auth_frag_valid_inv s S T1 T2 :
   (sts_auth s T1  sts_frag S T2)  s  S.
306
Proof. by intros (?&?&Hdisj); inversion Hdisj. Qed.
Ralf Jung's avatar
Ralf Jung committed
307

Robbert Krebbers's avatar
Robbert Krebbers committed
308
309
310
311
(** Op *)
Lemma sts_op_auth_frag s S T :
  s  S  closed S T  sts_auth s   sts_frag S T  sts_auth s T.
Proof.
312
  intros; split; [split|constructor; set_solver]; simpl.
313
  - intros (?&?&?); by apply closed_disjoint with S.
314
  - intros; split_and?; last constructor; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
315
316
Qed.
Lemma sts_op_auth_frag_up s T :
317
318
319
  sts_auth s   sts_frag_up s T  sts_auth s T.
Proof.
  intros; split; [split|constructor; set_solver]; simpl.
320
  - intros (?&[??]&?). by apply closed_disjoint with (up s T), elem_of_up.
321
322
323
  - intros; split_and?.
    + set_solver+.
    + by apply closed_up.
Robbert Krebbers's avatar
Robbert Krebbers committed
324
    + apply up_non_empty.
325
326
    + constructor; last set_solver. apply elem_of_up.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
327

Ralf Jung's avatar
Ralf Jung committed
328
Lemma sts_op_frag S1 S2 T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
329
  T1  T2  sts.closed S1 T1  sts.closed S2 T2 
Ralf Jung's avatar
Ralf Jung committed
330
331
  sts_frag (S1  S2) (T1  T2)  sts_frag S1 T1  sts_frag S2 T2.
Proof.
332
333
  intros HT HS1 HS2. rewrite /sts_frag -to_validity_op //.
  move=>/=[??]. split_and!; [auto; set_solver..|by constructor].
Ralf Jung's avatar
Ralf Jung committed
334
335
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
336
337
(** Frame preserving updates *)
Lemma sts_update_auth s1 s2 T1 T2 :
338
  steps (s1,T1) (s2,T2)  sts_auth s1 T1 ~~> sts_auth s2 T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
339
Proof.
340
  intros ?; apply validity_update.
341
  inversion 3 as [|? S ? Tf|]; simplify_eq/=; destruct_and?.
342
  destruct (steps_closed s1 s2 T1 T2 S Tf) as (?&?&?); auto; [].
343
  repeat (done || constructor).
Robbert Krebbers's avatar
Robbert Krebbers committed
344
Qed.
Ralf Jung's avatar
Ralf Jung committed
345

346
347
Lemma sts_update_frag S1 S2 T1 T2 :
  closed S2 T2  S1  S2  T2  T1  sts_frag S1 T1 ~~> sts_frag S2 T2.
348
Proof.
349
  rewrite /sts_frag=> ? HS HT. apply validity_update.
350
  inversion 3 as [|? S ? Tf|]; simplify_eq/=.
351
352
  - split_and!; first done; first set_solver. constructor; set_solver.
  - split_and!; first done; first set_solver. constructor; set_solver.
353
354
Qed.

355
356
Lemma sts_update_frag_up s1 S2 T1 T2 :
  closed S2 T2  s1  S2  T2  T1  sts_frag_up s1 T1 ~~> sts_frag S2 T2.
Ralf Jung's avatar
Ralf Jung committed
357
Proof.
358
359
  intros ? ? HT; apply sts_update_frag; [intros; eauto using closed_steps..].
  rewrite <-HT. eapply up_subseteq; done.
Robbert Krebbers's avatar
Robbert Krebbers committed
360
361
Qed.

362
363
Lemma sts_up_set_intersection S1 Sf Tf :
  closed Sf Tf  S1  Sf  S1  up_set (S1  Sf) Tf.
364
365
Proof.
  intros Hclf. apply (anti_symm ()).
366
367
368
  + move=>s [HS1 HSf]. split. by apply HS1. by apply subseteq_up_set.
  + move=>s [HS1 [s' [/elem_of_mkSet Hsup Hs']]]. split; first done.
    eapply closed_steps, Hsup; first done. set_solver +Hs'.
369
370
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
371
(** Inclusion *)
372
373
374
(* This is surprisingly different from to_validity_included. I am not sure
   whether this is because to_validity_included is non-canonical, or this
   one here is non-canonical - but I suspect both. *)
375
(* TODO: These have to be proven again. *)
376
(*
Robbert Krebbers's avatar
Robbert Krebbers committed
377
Lemma sts_frag_included S1 S2 T1 T2 :
378
379
  closed S2 T2 → S2 ≢ ∅ →
  (sts_frag S1 T1 ≼ sts_frag S2 T2) ↔
Robbert Krebbers's avatar
Robbert Krebbers committed
380
  (closed S1 T1 ∧ S1 ≢ ∅ ∧ ∃ Tf, T2 ≡ T1 ∪ Tf ∧ T1 ⊥ Tf ∧
381
382
                                 S2 ≡ S1 ∩ up_set S2 Tf).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
383
  intros ??; split.
384
  - intros [[???] ?].
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
  destruct (to_validity_included (sts_dra.car sts) (sts_dra.frag S1 T1) (sts_dra.frag S2 T2)) as [Hfincl Htoincl].
  intros Hcl2 HS2ne. split.
  - intros Hincl. destruct Hfincl as ((Hcl1 & ?) & (z & EQ & Hval & Hdisj)).
    { split; last done. split; done. }
    clear Htoincl. split_and!; try done; [].
    destruct z as [sf Tf|Sf Tf].
    { exfalso. inversion_clear EQ. }
    exists Tf. inversion_clear EQ as [|? ? ? ? HT2 HS2].
    inversion_clear Hdisj as [? ? ? ? _ HTdisj | |]. split_and!; [done..|].
    rewrite HS2. apply up_set_intersection. apply Hval.
  - intros (Hcl & Hne & (Tf & HT & HTdisj & HS)). destruct Htoincl as ((Hcl' & ?) & (z & EQ)); last first.
    { exists z. exact EQ. } clear Hfincl.
    split; first (split; done). exists (sts_dra.frag (up_set S2 Tf) Tf). split_and!.
    + constructor; done.
    + simpl. split.
      * apply closed_up_set. move=>s Hs2. move:(closed_disjoint _ _ Hcl2 _ Hs2).
        set_solver +HT.
Robbert Krebbers's avatar
Robbert Krebbers committed
402
      * by apply up_set_non_empty.
403
    + constructor; last done. by rewrite -HS.
404
405
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
406
Lemma sts_frag_included' S1 S2 T :
407
  closed S2 T → closed S1 T → S2 ≢ ∅ → S1 ≢ ∅ → S2 ≡ S1 ∩ up_set S2 ∅ →
Robbert Krebbers's avatar
Robbert Krebbers committed
408
  sts_frag S1 T ≼ sts_frag S2 T.
409
Proof.
410
411
  intros. apply sts_frag_included; split_and?; auto.
  exists ∅; split_and?; done || set_solver+.
412
Qed. *)
413
End stsRA.
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

(** STSs without tokens: Some stuff is simpler *)
Module sts_notok.
Structure stsT := STS {
  state : Type;
  prim_step : relation state;
}.
Arguments STS {_} _.
Arguments prim_step {_} _ _.
Notation states sts := (set (state sts)).

Canonical sts_notok (sts : stsT) : sts.stsT :=
  sts.STS (token:=Empty_set) (@prim_step sts) (λ _, ).

Section sts.
Context {sts : stsT}.
Implicit Types s : state sts.
Implicit Types S : states sts.

Notation prim_steps := (rtc prim_step).

Lemma sts_step s1 s2 :
  prim_step s1 s2  sts.step (s1, ) (s2, ).
Proof.
  intros. split; set_solver.
Qed.

Lemma sts_steps s1 s2 :
  prim_steps s1 s2  sts.steps (s1, ) (s2, ).
Proof.
  induction 1; eauto using sts_step, rtc_refl, rtc_l.
Qed.

Lemma frame_prim_step T s1 s2 :
  sts.frame_step T s1 s2  prim_step s1 s2.
Proof.
  inversion 1 as [??? Hstep]. inversion_clear Hstep. done.
Qed.

Lemma prim_frame_step T s1 s2 :
  prim_step s1 s2  sts.frame_step T s1 s2.
Proof.
  intros Hstep. apply sts.Frame_step with  ; first set_solver.
  by apply sts_step.
Qed.

Lemma mk_closed S :
  ( s1 s2, s1  S  prim_step s1 s2  s2  S)  sts.closed S .
Proof.
  intros ?. constructor; first by set_solver.
  intros ????. eauto using frame_prim_step.
Qed.

End sts.
Notation steps := (rtc prim_step).
End sts_notok.

Coercion sts_notok.sts_notok : sts_notok.stsT >-> sts.stsT.
Notation sts_notokT := sts_notok.stsT.
Notation STS_NoTok := sts_notok.STS.

Section sts_notokRA.
Import sts_notok.
Context {sts : sts_notokT}.
Implicit Types s : state sts.
Implicit Types S : states sts.

Lemma sts_notok_update_auth s1 s2 :
  rtc prim_step s1 s2  sts_auth s1  ~~> sts_auth s2 .
Proof.
  intros. by apply sts_update_auth, sts_steps.
Qed.

End sts_notokRA.