logic.v 40.4 KB
Newer Older
1
Require Export modures.cmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
3
4
5
Local Hint Extern 1 (_  _) => etransitivity; [eassumption|].
Local Hint Extern 1 (_  _) => etransitivity; [|eassumption].
Local Hint Extern 10 (_  _) => omega.

Robbert Krebbers's avatar
Robbert Krebbers committed
6
Record uPred (M : cmraT) : Type := IProp {
Robbert Krebbers's avatar
Robbert Krebbers committed
7
  uPred_holds :> nat  M  Prop;
Robbert Krebbers's avatar
Robbert Krebbers committed
8
  uPred_ne x1 x2 n : uPred_holds n x1  x1 ={n}= x2  uPred_holds n x2;
9
  uPred_0 x : uPred_holds 0 x;
Robbert Krebbers's avatar
Robbert Krebbers committed
10
  uPred_weaken x1 x2 n1 n2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
11
    uPred_holds n1 x1  x1  x2  n2  n1  {n2} x2  uPred_holds n2 x2
Robbert Krebbers's avatar
Robbert Krebbers committed
12
}.
13
Arguments uPred_holds {_} _ _ _ : simpl never.
14
Hint Resolve uPred_0.
Robbert Krebbers's avatar
Robbert Krebbers committed
15
16
Add Printing Constructor uPred.
Instance: Params (@uPred_holds) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Section cofe.
  Context {M : cmraT}.
  Instance uPred_equiv : Equiv (uPred M) := λ P Q,  x n,
    {n} x  P n x  Q n x.
  Instance uPred_dist : Dist (uPred M) := λ n P Q,  x n',
    n'  n  {n'} x  P n' x  Q n' x.
  Program Instance uPred_compl : Compl (uPred M) := λ c,
    {| uPred_holds n x := c n n x |}.
  Next Obligation. by intros c x y n ??; simpl in *; apply uPred_ne with x. Qed.
  Next Obligation. by intros c x; simpl. Qed.
  Next Obligation.
    intros c x1 x2 n1 n2 ????; simpl in *.
    apply (chain_cauchy c n2 n1); eauto using uPred_weaken.
  Qed.
  Definition uPred_cofe_mixin : CofeMixin (uPred M).
  Proof.
    split.
    * intros P Q; split; [by intros HPQ n x i ??; apply HPQ|].
      intros HPQ x n ?; apply HPQ with n; auto.
    * intros n; split.
      + by intros P x i.
      + by intros P Q HPQ x i ??; symmetry; apply HPQ.
40
      + by intros P Q Q' HP HQ x i ??; transitivity (Q i x);[apply HP|apply HQ].
41
    * intros n P Q HPQ x i ??; apply HPQ; auto.
42
    * intros P Q x i; rewrite Nat.le_0_r=> ->; split; intros; apply uPred_0.
43
44
45
46
47
48
    * by intros c n x i ??; apply (chain_cauchy c i n).
  Qed.
  Canonical Structure uPredC : cofeT := CofeT uPred_cofe_mixin.
End cofe.
Arguments uPredC : clear implicits.

Robbert Krebbers's avatar
Robbert Krebbers committed
49
50
51
52
Instance uPred_holds_ne {M} (P : uPred M) n : Proper (dist n ==> iff) (P n).
Proof. intros x1 x2 Hx; split; eauto using uPred_ne. Qed.
Instance uPred_holds_proper {M} (P : uPred M) n : Proper (() ==> iff) (P n).
Proof. by intros x1 x2 Hx; apply uPred_holds_ne, equiv_dist. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
53
54

(** functor *)
Robbert Krebbers's avatar
Robbert Krebbers committed
55
Program Definition uPred_map {M1 M2 : cmraT} (f : M2  M1)
Robbert Krebbers's avatar
Robbert Krebbers committed
56
  `{! n, Proper (dist n ==> dist n) f, !CMRAMonotone f}
Robbert Krebbers's avatar
Robbert Krebbers committed
57
  (P : uPred M1) : uPred M2 := {| uPred_holds n x := P n (f x) |}.
58
Next Obligation. by intros M1 M2 f ?? P y1 y2 n ? Hy; rewrite /= -Hy. Qed.
59
Next Obligation. intros M1 M2 f _ _ P x; apply uPred_0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
60
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
61
  naive_solver eauto using uPred_weaken, included_preserving, validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
62
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
63
Instance uPred_map_ne {M1 M2 : cmraT} (f : M2  M1)
Robbert Krebbers's avatar
Robbert Krebbers committed
64
  `{! n, Proper (dist n ==> dist n) f, !CMRAMonotone f} :
Robbert Krebbers's avatar
Robbert Krebbers committed
65
  Proper (dist n ==> dist n) (uPred_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
66
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
67
  by intros n x1 x2 Hx y n'; split; apply Hx; auto using validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
68
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
69
Definition uPredC_map {M1 M2 : cmraT} (f : M2 -n> M1) `{!CMRAMonotone f} :
Robbert Krebbers's avatar
Robbert Krebbers committed
70
  uPredC M1 -n> uPredC M2 := CofeMor (uPred_map f : uPredC M1  uPredC M2).
Robbert Krebbers's avatar
Robbert Krebbers committed
71
Lemma upredC_map_ne {M1 M2 : cmraT} (f g : M2 -n> M1)
Robbert Krebbers's avatar
Robbert Krebbers committed
72
    `{!CMRAMonotone f, !CMRAMonotone g} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
73
74
  f ={n}= g  uPredC_map f ={n}= uPredC_map g.
Proof.
75
76
  by intros Hfg P y n' ??;
    rewrite /uPred_holds /= (dist_le _ _ _ _(Hfg y)); last lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
77
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
78
79

(** logical entailement *)
80
81
Definition uPred_entails {M} (P Q : uPred M) :=  x n, {n} x  P n x  Q n x.
Hint Extern 0 (uPred_entails ?P ?P) => reflexivity.
82
Instance uPred_entails_rewrite_relation M : RewriteRelation (@uPred_entails M).
Robbert Krebbers's avatar
Robbert Krebbers committed
83
84

(** logical connectives *)
85
86
Program Definition uPred_const {M} (φ : Prop) : uPred M :=
  {| uPred_holds n x := match n return _ with 0 => True | _ => φ end |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
87
Solve Obligations with done.
88
Next Obligation. intros M P x1 x2 [|n1] [|n2]; auto with lia. Qed.
89
Instance uPred_inhabited M : Inhabited (uPred M) := populate (uPred_const True).
Robbert Krebbers's avatar
Robbert Krebbers committed
90

Robbert Krebbers's avatar
Robbert Krebbers committed
91
92
93
94
95
96
97
98
Program Definition uPred_and {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
Program Definition uPred_or {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
Program Definition uPred_impl {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  x' n',
Robbert Krebbers's avatar
Robbert Krebbers committed
99
       x  x'  n'  n  {n'} x'  P n' x'  Q n' x' |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
100
Next Obligation.
101
  intros M P Q x1' x1 n1 HPQ Hx1 x2 n2 ????.
Robbert Krebbers's avatar
Robbert Krebbers committed
102
103
  destruct (cmra_included_dist_l x1 x2 x1' n1) as (x2'&?&Hx2); auto.
  assert (x2' ={n2}= x2) as Hx2' by (by apply dist_le with n1).
104
  assert ({n2} x2') by (by rewrite Hx2'); rewrite -Hx2'.
Robbert Krebbers's avatar
Robbert Krebbers committed
105
  eauto using uPred_weaken, uPred_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
106
Qed.
107
Next Obligation. intros M P Q x1 x2 [|n]; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
108
109
Next Obligation. naive_solver eauto 2 with lia. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
110
111
112
113
Program Definition uPred_forall {M A} (P : A  uPred M) : uPred M :=
  {| uPred_holds n x :=  a, P a n x |}.
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
Program Definition uPred_exist {M A} (P : A  uPred M) : uPred M :=
114
115
116
117
118
119
120
  {| uPred_holds n x :=
       match n return _ with 0 => True | _ =>  a, P a n x end |}.
Next Obligation. intros M A P x y [|n]; naive_solver eauto using uPred_ne. Qed.
Next Obligation. done. Qed.
Next Obligation.
  intros M A P x y [|n] [|n']; naive_solver eauto 2 using uPred_weaken with lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
121

Robbert Krebbers's avatar
Robbert Krebbers committed
122
123
Program Definition uPred_eq {M} {A : cofeT} (a1 a2 : A) : uPred M :=
  {| uPred_holds n x := a1 ={n}= a2 |}.
124
Solve Obligations with naive_solver eauto 2 using (dist_le (A:=A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
125

Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
Program Definition uPred_sep {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  x1 x2, x ={n}= x1  x2  P n x1  Q n x2 |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
128
Next Obligation.
129
  by intros M P Q x y n (x1&x2&?&?&?) Hxy; exists x1, x2; rewrite -Hxy.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
Qed.
131
Next Obligation. by intros M P Q x; exists x, x. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
132
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
133
  intros M P Q x y n1 n2 (x1&x2&Hx&?&?) Hxy ??.
Robbert Krebbers's avatar
Robbert Krebbers committed
134
  assert ( x2', y ={n2}= x1  x2'  x2  x2') as (x2'&Hy&?).
135
  { destruct Hxy as [z Hy]; exists (x2  z); split; eauto using @ra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
136
    apply dist_le with n1; auto. by rewrite (associative op) -Hx Hy. }
137
138
139
  clear Hxy; cofe_subst y; exists x1, x2'; split_ands; [done| |].
  * apply uPred_weaken with x1 n1; eauto using cmra_valid_op_l.
  * apply uPred_weaken with x2 n1; eauto using cmra_valid_op_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
140
141
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
142
143
Program Definition uPred_wand {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  x' n',
Robbert Krebbers's avatar
Robbert Krebbers committed
144
       n'  n  {n'} (x  x')  P n' x'  Q n' (x  x') |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
145
Next Obligation.
146
  intros M P Q x1 x2 n1 HPQ Hx x3 n2 ???; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
147
  rewrite -(dist_le _ _ _ _ Hx) //; apply HPQ; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
148
149
  by rewrite (dist_le _ _ _ n2 Hx).
Qed.
150
Next Obligation. intros M P Q x1 x2 [|n]; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
152
153
  intros M P Q x1 x2 n1 n2 HPQ ??? x3 n3 ???; simpl in *.
  apply uPred_weaken with (x1  x3) n3;
154
    eauto using cmra_valid_included, @ra_preserving_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
155
156
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
157
158
159
Program Definition uPred_later {M} (P : uPred M) : uPred M :=
  {| uPred_holds n x := match n return _ with 0 => True | S n' => P n' x end |}.
Next Obligation. intros M P ?? [|n]; eauto using uPred_ne,(dist_le (A:=M)). Qed.
160
Next Obligation. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
161
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
162
  intros M P x1 x2 [|n1] [|n2]; eauto using uPred_weaken, cmra_valid_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
163
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
164
165
Program Definition uPred_always {M} (P : uPred M) : uPred M :=
  {| uPred_holds n x := P n (unit x) |}.
166
Next Obligation. by intros M P x1 x2 n ? Hx; rewrite /= -Hx. Qed.
167
Next Obligation. by intros; simpl. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
168
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
169
  intros M P x1 x2 n1 n2 ????; eapply uPred_weaken with (unit x1) n1;
170
    eauto using @ra_unit_preserving, cmra_unit_valid.
Robbert Krebbers's avatar
Robbert Krebbers committed
171
172
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
173
Program Definition uPred_own {M : cmraT} (a : M) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
174
  {| uPred_holds n x := a {n} x |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
175
Next Obligation. by intros M a x1 x2 n [a' ?] Hx; exists a'; rewrite -Hx. Qed.
176
Next Obligation. by intros M a x; exists x. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
177
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
178
  intros M a x1 x n1 n2 [a' Hx1] [x2 Hx] ??.
Robbert Krebbers's avatar
Robbert Krebbers committed
179
  exists (a'  x2). by rewrite (associative op) -(dist_le _ _ _ _ Hx1) // Hx.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
181
Program Definition uPred_valid {M A : cmraT} (a : A) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
182
  {| uPred_holds n x := {n} a |}.
183
Solve Obligations with naive_solver eauto 2 using cmra_valid_le, cmra_valid_0.
Robbert Krebbers's avatar
Robbert Krebbers committed
184

Robbert Krebbers's avatar
Robbert Krebbers committed
185
186
187
Delimit Scope uPred_scope with I.
Bind Scope uPred_scope with uPred.
Arguments uPred_holds {_} _%I _ _.
188
189
190
Arguments uPred_entails _ _%I _%I.
Notation "P ⊑ Q" := (uPred_entails P%I Q%I) (at level 70) : C_scope.
Notation "(⊑)" := uPred_entails (only parsing) : C_scope.
191
Notation "■ φ" := (uPred_const φ) (at level 20) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
192
193
194
Notation "'False'" := (uPred_const False) : uPred_scope.
Notation "'True'" := (uPred_const True) : uPred_scope.
Infix "∧" := uPred_and : uPred_scope.
195
Notation "(∧)" := uPred_and (only parsing) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
196
Infix "∨" := uPred_or : uPred_scope.
197
Notation "(∨)" := uPred_or (only parsing) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
198
199
Infix "→" := uPred_impl : uPred_scope.
Infix "★" := uPred_sep (at level 80, right associativity) : uPred_scope.
200
Notation "(★)" := uPred_sep (only parsing) : uPred_scope.
201
202
Notation "P -★ Q" := (uPred_wand P Q)
  (at level 90, Q at level 200, right associativity) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
203
Notation "∀ x .. y , P" :=
204
  (uPred_forall (λ x, .. (uPred_forall (λ y, P)) ..)%I) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
205
Notation "∃ x .. y , P" :=
206
  (uPred_exist (λ x, .. (uPred_exist (λ y, P)) ..)%I) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
207
208
Notation "▷ P" := (uPred_later P) (at level 20) : uPred_scope.
Notation "□ P" := (uPred_always P) (at level 20) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
209
Infix "≡" := uPred_eq : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
210
Notation "✓" := uPred_valid (at level 1) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
211

212
213
214
Definition uPred_iff {M} (P Q : uPred M) : uPred M := ((P  Q)  (Q  P))%I.
Infix "↔" := uPred_iff : uPred_scope.

215
216
Fixpoint uPred_big_and {M} (Ps : list (uPred M)) :=
  match Ps with [] => True | P :: Ps => P  uPred_big_and Ps end%I.
217
218
Instance: Params (@uPred_big_and) 1.
Notation "'Π∧' Ps" := (uPred_big_and Ps) (at level 20) : uPred_scope.
219
220
Fixpoint uPred_big_sep {M} (Ps : list (uPred M)) :=
  match Ps with [] => True | P :: Ps => P  uPred_big_sep Ps end%I.
221
222
Instance: Params (@uPred_big_sep) 1.
Notation "'Π★' Ps" := (uPred_big_sep Ps) (at level 20) : uPred_scope.
223

224
225
Class TimelessP {M} (P : uPred M) := timelessP :  P  (P   False).
Arguments timelessP {_} _ {_} _ _ _ _.
226
227
Class AlwaysStable {M} (P : uPred M) := always_stable : P   P.
Arguments always_stable {_} _ {_} _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
228

Robbert Krebbers's avatar
Robbert Krebbers committed
229
Module uPred. Section uPred_logic.
230
Context {M : cmraT}.
231
Implicit Types φ : Prop.
Robbert Krebbers's avatar
Robbert Krebbers committed
232
Implicit Types P Q : uPred M.
233
Implicit Types Ps Qs : list (uPred M).
234
Implicit Types A : Type.
235
Notation "P ⊑ Q" := (@uPred_entails M P%I Q%I). (* Force implicit argument M *)
236
Arguments uPred_holds {_} !_ _ _ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
237

238
Global Instance: PreOrder (@uPred_entails M).
Robbert Krebbers's avatar
Robbert Krebbers committed
239
Proof. split. by intros P x i. by intros P Q Q' HP HQ x i ??; apply HQ, HP. Qed.
240
Global Instance: AntiSymmetric () (@uPred_entails M).
241
Proof. intros P Q HPQ HQP; split; auto. Qed.
242
Lemma equiv_spec P Q : P  Q  P  Q  Q  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
Proof.
244
  split; [|by intros [??]; apply (anti_symmetric ())].
245
  intros HPQ; split; intros x i; apply HPQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
246
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
247
Global Instance entails_proper :
248
  Proper (() ==> () ==> iff) (() : relation (uPred M)).
Robbert Krebbers's avatar
Robbert Krebbers committed
249
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
250
251
252
  move => P1 P2 /equiv_spec [HP1 HP2] Q1 Q2 /equiv_spec [HQ1 HQ2]; split; intros.
  * by transitivity P1; [|transitivity Q1].
  * by transitivity P2; [|transitivity Q2].
Robbert Krebbers's avatar
Robbert Krebbers committed
253
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
254

255
(** Non-expansiveness and setoid morphisms *)
Robbert Krebbers's avatar
Robbert Krebbers committed
256
Global Instance const_proper : Proper (iff ==> ()) (@uPred_const M).
257
Proof. by intros φ1 φ2 Hφ ? [|n] ?; try apply Hφ. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
258
Global Instance and_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_and M).
Robbert Krebbers's avatar
Robbert Krebbers committed
259
260
261
Proof.
  intros P P' HP Q Q' HQ; split; intros [??]; split; by apply HP || by apply HQ.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
262
Global Instance and_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
263
  Proper (() ==> () ==> ()) (@uPred_and M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
264
Global Instance or_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_or M).
Robbert Krebbers's avatar
Robbert Krebbers committed
265
266
267
268
Proof.
  intros P P' HP Q Q' HQ; split; intros [?|?];
    first [by left; apply HP | by right; apply HQ].
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
269
Global Instance or_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
270
  Proper (() ==> () ==> ()) (@uPred_or M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
271
Global Instance impl_ne n :
Robbert Krebbers's avatar
Robbert Krebbers committed
272
  Proper (dist n ==> dist n ==> dist n) (@uPred_impl M).
Robbert Krebbers's avatar
Robbert Krebbers committed
273
274
275
Proof.
  intros P P' HP Q Q' HQ; split; intros HPQ x' n'' ????; apply HQ,HPQ,HP; auto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
276
Global Instance impl_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
277
  Proper (() ==> () ==> ()) (@uPred_impl M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
278
Global Instance sep_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_sep M).
Robbert Krebbers's avatar
Robbert Krebbers committed
279
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
280
281
  intros P P' HP Q Q' HQ x n' ??; split; intros (x1&x2&?&?&?); cofe_subst x;
    exists x1, x2; split_ands; try (apply HP || apply HQ);
Robbert Krebbers's avatar
Robbert Krebbers committed
282
283
    eauto using cmra_valid_op_l, cmra_valid_op_r.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
284
Global Instance sep_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
285
  Proper (() ==> () ==> ()) (@uPred_sep M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
286
Global Instance wand_ne n :
Robbert Krebbers's avatar
Robbert Krebbers committed
287
  Proper (dist n ==> dist n ==> dist n) (@uPred_wand M).
Robbert Krebbers's avatar
Robbert Krebbers committed
288
289
290
291
Proof.
  intros P P' HP Q Q' HQ x n' ??; split; intros HPQ x' n'' ???;
    apply HQ, HPQ, HP; eauto using cmra_valid_op_r.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
292
Global Instance wand_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
293
  Proper (() ==> () ==> ()) (@uPred_wand M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
294
Global Instance eq_ne (A : cofeT) n :
Robbert Krebbers's avatar
Robbert Krebbers committed
295
  Proper (dist n ==> dist n ==> dist n) (@uPred_eq M A).
Robbert Krebbers's avatar
Robbert Krebbers committed
296
297
Proof.
  intros x x' Hx y y' Hy z n'; split; intros; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
298
299
  * by rewrite -(dist_le _ _ _ _ Hx) -?(dist_le _ _ _ _ Hy); auto.
  * by rewrite (dist_le _ _ _ _ Hx) ?(dist_le _ _ _ _ Hy); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
300
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
Global Instance eq_proper (A : cofeT) :
Robbert Krebbers's avatar
Robbert Krebbers committed
302
  Proper (() ==> () ==> ()) (@uPred_eq M A) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
303
Global Instance forall_ne A :
Robbert Krebbers's avatar
Robbert Krebbers committed
304
  Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_forall M A).
Robbert Krebbers's avatar
Robbert Krebbers committed
305
Proof. by intros n P1 P2 HP12 x n'; split; intros HP a; apply HP12. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
306
Global Instance forall_proper A :
Robbert Krebbers's avatar
Robbert Krebbers committed
307
  Proper (pointwise_relation _ () ==> ()) (@uPred_forall M A).
308
Proof. by intros P1 P2 HP12 x n'; split; intros HP a; apply HP12. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
309
Global Instance exists_ne A :
Robbert Krebbers's avatar
Robbert Krebbers committed
310
  Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_exist M A).
Robbert Krebbers's avatar
Robbert Krebbers committed
311
Proof.
312
  by intros n P1 P2 HP x [|n']; [|split; intros [a ?]; exists a; apply HP].
Robbert Krebbers's avatar
Robbert Krebbers committed
313
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
314
Global Instance exist_proper A :
Robbert Krebbers's avatar
Robbert Krebbers committed
315
  Proper (pointwise_relation _ () ==> ()) (@uPred_exist M A).
316
Proof.
317
  by intros P1 P2 HP x [|n']; [|split; intros [a ?]; exists a; apply HP].
318
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
319
Global Instance later_contractive : Contractive (@uPred_later M).
Robbert Krebbers's avatar
Robbert Krebbers committed
320
321
322
323
Proof.
  intros n P Q HPQ x [|n'] ??; simpl; [done|].
  apply HPQ; eauto using cmra_valid_S.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
324
Global Instance later_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
325
  Proper (() ==> ()) (@uPred_later M) := ne_proper _.
Robbert Krebbers's avatar
Robbert Krebbers committed
326
Global Instance always_ne n: Proper (dist n ==> dist n) (@uPred_always M).
Robbert Krebbers's avatar
Robbert Krebbers committed
327
Proof. intros P1 P2 HP x n'; split; apply HP; eauto using cmra_unit_valid. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
328
Global Instance always_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
329
  Proper (() ==> ()) (@uPred_always M) := ne_proper _.
Robbert Krebbers's avatar
Robbert Krebbers committed
330
Global Instance own_ne n : Proper (dist n ==> dist n) (@uPred_own M).
Robbert Krebbers's avatar
Robbert Krebbers committed
331
332
Proof.
  by intros a1 a2 Ha x n'; split; intros [a' ?]; exists a'; simpl; first
Robbert Krebbers's avatar
Robbert Krebbers committed
333
334
    [rewrite -(dist_le _ _ _ _ Ha); last lia
    |rewrite (dist_le _ _ _ _ Ha); last lia].
Robbert Krebbers's avatar
Robbert Krebbers committed
335
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
336
337
Global Instance own_proper : Proper (() ==> ()) (@uPred_own M) := ne_proper _.
Global Instance iff_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_iff M).
338
Proof. unfold uPred_iff; solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
339
Global Instance iff_proper :
340
  Proper (() ==> () ==> ()) (@uPred_iff M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
342

(** Introduction and elimination rules *)
343
Lemma const_intro φ P : φ  P   φ.
344
Proof. by intros ?? [|?]. Qed.
345
Lemma const_elim φ Q R : Q   φ  (φ  Q  R)  Q  R.
Robbert Krebbers's avatar
Robbert Krebbers committed
346
347
348
349
Proof.
  intros HQP HQR x [|n] ??; first done.
  apply HQR; first eapply (HQP _ (S n)); eauto.
Qed.
350
Lemma True_intro P : P  True.
Robbert Krebbers's avatar
Robbert Krebbers committed
351
Proof. by apply const_intro. Qed.
352
Lemma False_elim P : False  P.
353
Proof. by intros x [|n] ?. Qed.
354
Lemma and_elim_l P Q : (P  Q)  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
355
Proof. by intros x n ? [??]. Qed.
356
Lemma and_elim_r P Q : (P  Q)  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
357
Proof. by intros x n ? [??]. Qed.
358
Lemma and_intro P Q R : P  Q  P  R  P  (Q  R).
359
Proof. intros HQ HR x n ??; split; auto. Qed.
360
Lemma or_intro_l P Q : P  (P  Q).
361
Proof. intros x n ??; left; auto. Qed.
362
Lemma or_intro_r P Q : Q  (P  Q).
363
Proof. intros x n ??; right; auto. Qed.
364
Lemma or_elim P Q R : P  R  Q  R  (P  Q)  R.
Robbert Krebbers's avatar
Robbert Krebbers committed
365
Proof. intros HP HQ x n ? [?|?]. by apply HP. by apply HQ. Qed.
366
Lemma impl_intro_r P Q R : (P  Q)  R  P  (Q  R).
Robbert Krebbers's avatar
Robbert Krebbers committed
367
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
368
  intros HQ x n ?? x' n' ????; apply HQ; naive_solver eauto using uPred_weaken.
Robbert Krebbers's avatar
Robbert Krebbers committed
369
Qed.
370
Lemma impl_elim P Q R : P  (Q  R)  P  Q  P  R.
371
Proof. by intros HP HP' x n ??; apply HP with x n, HP'. Qed.
372
Lemma forall_intro {A} P (Q : A  uPred M): ( a, P  Q a)  P  ( a, Q a).
373
Proof. by intros HPQ x n ?? a; apply HPQ. Qed.
374
Lemma forall_elim {A} (P : A  uPred M) a : ( a, P a)  P a.
Robbert Krebbers's avatar
Robbert Krebbers committed
375
Proof. intros x n ? HP; apply HP. Qed.
376
Lemma exist_intro {A} (P : A  uPred M) a : P a  ( a, P a).
377
Proof. by intros x [|n] ??; [done|exists a]. Qed.
378
Lemma exist_elim {A} (P : A  uPred M) Q : ( a, P a  Q)  ( a, P a)  Q.
379
Proof. by intros HPQ x [|n] ?; [|intros [a ?]; apply HPQ with a]. Qed.
380
Lemma eq_refl {A : cofeT} (a : A) P : P  (a  a).
381
Proof. by intros x n ??; simpl. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
382
Lemma eq_rewrite {A : cofeT} P (Q : A  uPred M)
383
  `{HQ:∀ n, Proper (dist n ==> dist n) Q} a b : P  (a  b)  P  Q a  P  Q b.
384
385
386
Proof.
  intros Hab Ha x n ??; apply HQ with n a; auto. by symmetry; apply Hab with x.
Qed.
387
Lemma eq_equiv `{Empty M, !RAIdentity M} {A : cofeT} (a b : A) :
388
  True  (a  b)  a  b.
389
390
391
392
393
Proof.
  intros Hab; apply equiv_dist; intros n; apply Hab with .
  * apply cmra_valid_validN, ra_empty_valid.
  * by destruct n.
Qed.
394
Lemma iff_equiv P Q : True  (P  Q)  P  Q.
395
396
397
Proof. by intros HPQ x [|n] ?; [|split; intros; apply HPQ with x (S n)]. Qed.

(* Derived logical stuff *)
398
Lemma and_elim_l' P Q R : P  R  (P  Q)  R.
399
Proof. by rewrite and_elim_l. Qed.
400
Lemma and_elim_r' P Q R : Q  R  (P  Q)  R.
401
Proof. by rewrite and_elim_r. Qed.
402
Lemma or_intro_l' P Q R : P  Q  P  (Q  R).
403
Proof. intros ->; apply or_intro_l. Qed.
404
Lemma or_intro_r' P Q R : P  R  P  (Q  R).
405
Proof. intros ->; apply or_intro_r. Qed.
406
Lemma exist_intro' {A} P (Q : A  uPred M) a : P  Q a  P  ( a, Q a).
407
Proof. intros ->; apply exist_intro. Qed.
408

409
Hint Resolve or_elim or_intro_l' or_intro_r'.
Robbert Krebbers's avatar
Robbert Krebbers committed
410
411
Hint Resolve and_intro and_elim_l' and_elim_r'.
Hint Immediate True_intro False_elim.
412

413
414
Lemma impl_intro_l P Q R : (Q  P)  R  P  (Q  R).
Proof. intros HR; apply impl_intro_r; rewrite -HR; auto. Qed.
415
416
417
418
419
420
421
422
Lemma impl_elim_l P Q : ((P  Q)  P)  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_r P Q : (P  (P  Q))  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_l' P Q R : P  (Q  R)  (P  Q)  R.
Proof. intros; apply impl_elim with Q; auto. Qed.
Lemma impl_elim_r' P Q R : Q  (P  R)  (P  Q)  R.
Proof. intros; apply impl_elim with P; auto. Qed.
423

424
425
426
427
Lemma const_elim_l φ Q R : (φ  Q  R)  ( φ  Q)  R.
Proof. intros; apply const_elim with φ; eauto. Qed.
Lemma const_elim_r φ Q R : (φ  Q  R)  (Q   φ)  R.
Proof. intros; apply const_elim with φ; eauto. Qed.
428
429
430
Lemma equiv_eq {A : cofeT} P (a b : A) : a  b  P  (a  b).
Proof. intros ->; apply eq_refl. Qed.
Lemma eq_sym {A : cofeT} (a b : A) : (a  b)  (b  a).
431
Proof.
432
433
  refine (eq_rewrite _ (λ b, b  a)%I a b _ _); auto using eq_refl.
  intros n; solve_proper.
434
Qed.
435

436
437
Lemma const_mono φ1 φ2 : (φ1  φ2)   φ1   φ2.
Proof. intros; apply const_elim with φ1; eauto using const_intro. Qed.
438
Lemma and_mono P P' Q Q' : P  Q  P'  Q'  (P  P')  (Q  Q').
439
Proof. auto. Qed.
440
Lemma or_mono P P' Q Q' : P  Q  P'  Q'  (P  P')  (Q  Q').
441
Proof. auto. Qed.
442
Lemma impl_mono P P' Q Q' : Q  P  P'  Q'  (P  P')  (Q  Q').
443
Proof.
444
  intros HP HQ'; apply impl_intro_l; rewrite -HQ'.
445
  apply impl_elim with P; eauto.
446
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
447
Lemma forall_mono {A} (P Q : A  uPred M) :
448
  ( a, P a  Q a)  ( a, P a)  ( a, Q a).
449
Proof.
450
  intros HP. apply forall_intro=> a; rewrite -(HP a); apply forall_elim.
451
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
452
Lemma exist_mono {A} (P Q : A  uPred M) :
453
  ( a, P a  Q a)  ( a, P a)  ( a, Q a).
454
Proof. intros HP. apply exist_elim=> a; rewrite (HP a); apply exist_intro. Qed.
455
Global Instance const_mono' : Proper (impl ==> ()) (@uPred_const M).
456
Proof. intros φ1 φ2; apply const_mono. Qed.
457
Global Instance and_mono' : Proper (() ==> () ==> ()) (@uPred_and M).
Robbert Krebbers's avatar
Robbert Krebbers committed
458
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
459
Global Instance or_mono' : Proper (() ==> () ==> ()) (@uPred_or M).
Robbert Krebbers's avatar
Robbert Krebbers committed
460
461
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance impl_mono' :
462
  Proper (flip () ==> () ==> ()) (@uPred_impl M).
Robbert Krebbers's avatar
Robbert Krebbers committed
463
464
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
Global Instance forall_mono' A :
465
  Proper (pointwise_relation _ () ==> ()) (@uPred_forall M A).
Robbert Krebbers's avatar
Robbert Krebbers committed
466
467
Proof. intros P1 P2; apply forall_mono. Qed.
Global Instance exist_mono' A :
468
  Proper (pointwise_relation _ () ==> ()) (@uPred_exist M A).
Robbert Krebbers's avatar
Robbert Krebbers committed
469
Proof. intros P1 P2; apply exist_mono. Qed.
470

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
Global Instance and_idem : Idempotent () (@uPred_and M).
Proof. intros P; apply (anti_symmetric ()); auto. Qed.
Global Instance or_idem : Idempotent () (@uPred_or M).
Proof. intros P; apply (anti_symmetric ()); auto. Qed.
Global Instance and_comm : Commutative () (@uPred_and M).
Proof. intros P Q; apply (anti_symmetric ()); auto. Qed.
Global Instance True_and : LeftId () True%I (@uPred_and M).
Proof. intros P; apply (anti_symmetric ()); auto. Qed.
Global Instance and_True : RightId () True%I (@uPred_and M).
Proof. intros P; apply (anti_symmetric ()); auto. Qed.
Global Instance False_and : LeftAbsorb () False%I (@uPred_and M).
Proof. intros P; apply (anti_symmetric ()); auto. Qed.
Global Instance and_False : RightAbsorb () False%I (@uPred_and M).
Proof. intros P; apply (anti_symmetric ()); auto. Qed.
Global Instance True_or : LeftAbsorb () True%I (@uPred_or M).
Proof. intros P; apply (anti_symmetric ()); auto. Qed.
Global Instance or_True : RightAbsorb () True%I (@uPred_or M).
Proof. intros P; apply (anti_symmetric ()); auto. Qed.
Global Instance False_or : LeftId () False%I (@uPred_or M).
Proof. intros P; apply (anti_symmetric ()); auto. Qed.
Global Instance or_False : RightId () False%I (@uPred_or M).
Proof. intros P; apply (anti_symmetric ()); auto. Qed.
Global Instance and_assoc : Associative () (@uPred_and M).
Proof. intros P Q R; apply (anti_symmetric ()); auto. Qed.
Global Instance or_comm : Commutative () (@uPred_or M).
Proof. intros P Q; apply (anti_symmetric ()); auto. Qed.
Global Instance or_assoc : Associative () (@uPred_or M).
Proof. intros P Q R; apply (anti_symmetric ()); auto. Qed.
Lemma or_and_l P Q R : (P  Q  R)%I  ((P  Q)  (P  R))%I.
500
Proof.
501
  apply (anti_symmetric ()); first auto.
502
  do 2 (apply impl_elim_l', or_elim; apply impl_intro_l); auto.
503
Qed.
504
505
506
507
508
Lemma or_and_r P Q R : (P  Q  R)%I  ((P  R)  (Q  R))%I.
Proof. by rewrite -!(commutative _ R) or_and_l. Qed.
Lemma and_or_l P Q R : (P  (Q  R))%I  (P  Q  P  R)%I.
Proof.
  apply (anti_symmetric ()); last auto.
509
  apply impl_elim_r', or_elim; apply impl_intro_l; auto.
510
511
512
Qed.
Lemma and_or_r P Q R : ((P  Q)  R)%I  (P  R  Q  R)%I.
Proof. by rewrite -!(commutative _ R) and_or_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
513
514

(* BI connectives *)
515
Lemma sep_mono P P' Q Q' : P  Q  P'  Q'  (P  P')  (Q  Q').
Robbert Krebbers's avatar
Robbert Krebbers committed
516
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
517
518
  intros HQ HQ' x n' ? (x1&x2&?&?&?); exists x1, x2; cofe_subst x;
    eauto 7 using cmra_valid_op_l, cmra_valid_op_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
519
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
520
Global Instance True_sep : LeftId () True%I (@uPred_sep M).
Robbert Krebbers's avatar
Robbert Krebbers committed
521
522
Proof.
  intros P x n Hvalid; split.
523
  * intros (x1&x2&?&_&?); cofe_subst; eauto using uPred_weaken, @ra_included_r.
524
  * by destruct n as [|n]; [|intros ?; exists (unit x), x; rewrite ra_unit_l].
Robbert Krebbers's avatar
Robbert Krebbers committed
525
Qed. 
Robbert Krebbers's avatar
Robbert Krebbers committed
526
Global Instance sep_commutative : Commutative () (@uPred_sep M).
Robbert Krebbers's avatar
Robbert Krebbers committed
527
528
Proof.
  by intros P Q x n ?; split;
529
    intros (x1&x2&?&?&?); exists x2, x1; rewrite (commutative op).
Robbert Krebbers's avatar
Robbert Krebbers committed
530
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
531
Global Instance sep_associative : Associative () (@uPred_sep M).
Robbert Krebbers's avatar
Robbert Krebbers committed
532
533
Proof.
  intros P Q R x n ?; split.
534
  * intros (x1&x2&Hx&?&y1&y2&Hy&?&?); exists (x1  y1), y2; split_ands; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
535
    + by rewrite -(associative op) -Hy -Hx.
536
537
    + by exists x1, y1.
  * intros (x1&x2&Hx&(y1&y2&Hy&?&?)&?); exists y1, (y2  x2); split_ands; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
538
    + by rewrite (associative op) -Hy -Hx.
539
    + by exists y2, x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
540
Qed.
541
Lemma wand_intro P Q R : (P  Q)  R  P  (Q - R).
Robbert Krebbers's avatar
Robbert Krebbers committed
542
Proof.
543
  intros HPQR x n ?? x' n' ???; apply HPQR; auto.
544
  exists x, x'; split_ands; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
545
  eapply uPred_weaken with x n; eauto using cmra_valid_op_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
546
Qed.
547
Lemma wand_elim_l P Q : ((P - Q)  P)  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
548
Proof. by intros x n ? (x1&x2&Hx&HPQ&?); cofe_subst; apply HPQ. Qed.
549
550
551
552
Lemma sep_or_l_1 P Q R : (P  (Q  R))  (P  Q  P  R).
Proof. by intros x n ? (x1&x2&Hx&?&[?|?]); [left|right]; exists x1, x2. Qed.
Lemma sep_exist_l_1 {A} P (Q : A  uPred M) : (P   b, Q b)  ( b, P  Q b).
Proof. by intros x [|n] ?; [done|intros (x1&x2&?&?&[a ?]); exists a,x1,x2]. Qed.
553
554

(* Derived BI Stuff *)
Robbert Krebbers's avatar
Robbert Krebbers committed
555
Hint Resolve sep_mono.
556
Global Instance sep_mono' : Proper (() ==> () ==> ()) (@uPred_sep M).
Robbert Krebbers's avatar
Robbert Krebbers committed
557
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
558
Lemma wand_mono P P' Q Q' : Q  P  P'  Q'  (P - P')  (Q - Q').
559
Proof. intros HP HQ; apply wand_intro; rewrite HP -HQ; apply wand_elim_l. Qed.
560
Global Instance wand_mono' : Proper (flip () ==> () ==> ()) (@uPred_wand M).
Robbert Krebbers's avatar
Robbert Krebbers committed
561
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
562

Robbert Krebbers's avatar
Robbert Krebbers committed
563
Global Instance sep_True : RightId () True%I (@uPred_sep M).
Robbert Krebbers's avatar
Robbert Krebbers committed
564
Proof. by intros P; rewrite (commutative _) (left_id _ _). Qed.
565
Lemma sep_elim_l P Q : (P  Q)  P.
566
Proof. by rewrite (True_intro Q) (right_id _ _). Qed.
567
Lemma sep_elim_r P Q : (P  Q)  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
568
Proof. by rewrite (commutative ())%I; apply sep_elim_l. Qed.
569
Lemma sep_elim_l' P Q R : P  R  (P  Q)  R.
570
Proof. intros ->; apply sep_elim_l. Qed.
571
Lemma sep_elim_r' P Q R : Q  R  (P  Q)  R.
572
573
Proof. intros ->; apply sep_elim_r. Qed.
Hint Resolve sep_elim_l' sep_elim_r'.
574
575
576
577
578
579
Lemma wand_elim_r P Q : (P  (P - Q))  Q.
Proof. rewrite (commutative _ P); apply wand_elim_l. Qed.
Lemma wand_elim_l' P Q R : P  (Q - R)  (P  Q)  R.
Proof. intros ->; apply wand_elim_l. Qed.
Lemma wand_elim_r' P Q R : Q  (P - R)  (P  Q)  R.
Proof. intros ->; apply wand_elim_r. Qed.
580
Lemma sep_and P Q : (P  Q)  (P  Q).
581
Proof. auto. Qed.
582
583
584
Lemma impl_wand P Q : (P  Q)  (P - Q).
Proof. apply wand_intro, impl_elim with P; auto. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
585
Global Instance sep_False : LeftAbsorb () False%I (@uPred_sep M).
586
Proof. intros P; apply (anti_symmetric _); auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
587
Global Instance False_sep : RightAbsorb () False%I (@uPred_sep M).
588
Proof. intros P; apply (anti_symmetric _); auto. Qed.
589
590

Lemma sep_and_l P Q R : (P  (Q  R))  ((P  Q)  (P  R)).
591
Proof. auto. Qed.
592
593
594
595
596
597
598
599
600
601
602
603
604
605