big_op.v 29.4 KB
Newer Older
1
2
From iris.algebra Require Export list cmra_big_op.
From iris.base_logic Require Export base_logic.
Robbert Krebbers's avatar
Robbert Krebbers committed
3
From iris.prelude Require Import gmap fin_collections gmultiset functions.
4
Import uPred.
5

6
7
8
9
10
(* We make use of the bigops on CMRAs, so we first define a (somewhat ad-hoc)
CMRA structure on uPred. *)
Section cmra.
  Context {M : ucmraT}.

11
12
  Instance uPred_valid_inst : Valid (uPred M) := λ P,  n x, {n} x  P n x.
  Instance uPred_validN_inst : ValidN (uPred M) := λ n P,
13
14
15
16
     n' x, n'  n  {n'} x  P n' x.
  Instance uPred_op : Op (uPred M) := uPred_sep.
  Instance uPred_pcore : PCore (uPred M) := λ _, Some True%I.

17
  Instance uPred_validN_ne n : Proper (dist n ==> iff) (uPred_validN_inst n).
18
19
20
21
22
23
24
25
  Proof. intros P Q HPQ; split=> H n' x ??; by apply HPQ, H. Qed.

  Lemma uPred_validN_alt n (P : uPred M) : {n} P  P {n} True%I.
  Proof.
    unseal=> HP; split=> n' x ??; split; [done|].
    intros _. by apply HP.
  Qed.

26
  Lemma uPred_cmra_validN_op_l n P Q : {n} (P  Q)%I  {n} P.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
  Proof.
    unseal. intros HPQ n' x ??.
    destruct (HPQ n' x) as (x1&x2&->&?&?); auto.
    eapply uPred_mono with x1; eauto using cmra_includedN_l.
  Qed.

  Lemma uPred_included P Q : P  Q  Q  P.
  Proof. intros [P' ->]. apply sep_elim_l. Qed.

  Definition uPred_cmra_mixin : CMRAMixin (uPred M).
  Proof.
    apply cmra_total_mixin; try apply _ || by eauto.
    - intros n P Q ??. by cofe_subst.
    - intros P; split.
      + intros HP n n' x ?. apply HP.
      + intros HP n x. by apply (HP n).
    - intros n P HP n' x ?. apply HP; auto.
    - intros P. by rewrite left_id.
    - intros P Q _. exists True%I. by rewrite left_id.
    - intros n P Q. apply uPred_cmra_validN_op_l.
    - intros n P Q1 Q2 HP HPQ. exists True%I, P; split_and!.
      + by rewrite left_id.
      + move: HP; by rewrite HPQ=> /uPred_cmra_validN_op_l /uPred_validN_alt.
      + move: HP; rewrite HPQ=> /uPred_cmra_validN_op_l /uPred_validN_alt=> ->.
        by rewrite left_id.
  Qed.

  Canonical Structure uPredR :=
55
    CMRAT (uPred M) uPred_ofe_mixin uPred_cmra_mixin.
56
57
58
59
60
61
62
63
64
65
66

  Instance uPred_empty : Empty (uPred M) := True%I.

  Definition uPred_ucmra_mixin : UCMRAMixin (uPred M).
  Proof.
    split; last done.
    - by rewrite /empty /uPred_empty uPred_pure_eq.
    - intros P. by rewrite left_id.
  Qed.

  Canonical Structure uPredUR :=
67
    UCMRAT (uPred M) uPred_ofe_mixin uPred_cmra_mixin uPred_ucmra_mixin.
68
69
70
71
72
73
74
75

  Global Instance uPred_always_homomorphism : UCMRAHomomorphism uPred_always.
  Proof. split; [split|]. apply _. apply always_sep. apply always_pure. Qed.
  Global Instance uPred_always_if_homomorphism b :
    UCMRAHomomorphism (uPred_always_if b).
  Proof. split; [split|]. apply _. apply always_if_sep. apply always_if_pure. Qed.
  Global Instance uPred_later_homomorphism : UCMRAHomomorphism uPred_later.
  Proof. split; [split|]. apply _. apply later_sep. apply later_True. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
76
77
  Global Instance uPred_laterN_homomorphism n : UCMRAHomomorphism (uPred_laterN n).
  Proof. split; [split|]. apply _. apply laterN_sep. apply laterN_True. Qed.
78
79
80
81
82
83
84
85
86
87
88
  Global Instance uPred_except_0_homomorphism :
    CMRAHomomorphism uPred_except_0.
  Proof. split. apply _. apply except_0_sep. Qed.
  Global Instance uPred_ownM_homomorphism : UCMRAHomomorphism uPred_ownM.
  Proof. split; [split|]. apply _. apply ownM_op. apply ownM_empty'. Qed.
End cmra.

Arguments uPredR : clear implicits.
Arguments uPredUR : clear implicits.

(* Notations *)
89
Notation "'[∗]' Ps" := (big_op (M:=uPredUR _) Ps) (at level 20) : uPred_scope.
90

91
Notation "'[∗' 'list' ] k ↦ x ∈ l , P" := (big_opL (M:=uPredUR _) l (λ k x, P))
92
  (at level 200, l at level 10, k, x at level 1, right associativity,
93
94
   format "[∗  list ]  k ↦ x  ∈  l ,  P") : uPred_scope.
Notation "'[∗' 'list' ] x ∈ l , P" := (big_opL (M:=uPredUR _) l (λ _ x, P))
95
  (at level 200, l at level 10, x at level 1, right associativity,
96
   format "[∗  list ]  x  ∈  l ,  P") : uPred_scope.
97

98
Notation "'[∗' 'map' ] k ↦ x ∈ m , P" := (big_opM (M:=uPredUR _) m (λ k x, P))
99
  (at level 200, m at level 10, k, x at level 1, right associativity,
100
101
   format "[∗  map ]  k ↦ x  ∈  m ,  P") : uPred_scope.
Notation "'[∗' 'map' ] x ∈ m , P" := (big_opM (M:=uPredUR _) m (λ _ x, P))
102
  (at level 200, m at level 10, x at level 1, right associativity,
103
   format "[∗  map ]  x  ∈  m ,  P") : uPred_scope.
104

105
Notation "'[∗' 'set' ] x ∈ X , P" := (big_opS (M:=uPredUR _) X (λ x, P))
106
  (at level 200, X at level 10, x at level 1, right associativity,
107
   format "[∗  set ]  x  ∈  X ,  P") : uPred_scope.
108

Robbert Krebbers's avatar
Robbert Krebbers committed
109
110
111
112
Notation "'[∗' 'mset' ] x ∈ X , P" := (big_opMS (M:=uPredUR _) X (λ x, P))
  (at level 200, X at level 10, x at level 1, right associativity,
   format "[∗  mset ]  x  ∈  X ,  P") : uPred_scope.

113
(** * Persistence and timelessness of lists of uPreds *)
114
Class PersistentL {M} (Ps : list (uPred M)) :=
115
  persistentL : Forall PersistentP Ps.
116
Arguments persistentL {_} _ {_}.
117

118
119
120
121
Class TimelessL {M} (Ps : list (uPred M)) :=
  timelessL : Forall TimelessP Ps.
Arguments timelessL {_} _ {_}.

122
(** * Properties *)
123
Section big_op.
124
Context {M : ucmraT}.
125
126
127
Implicit Types Ps Qs : list (uPred M).
Implicit Types A : Type.

128
129
Global Instance big_sep_mono' :
  Proper (Forall2 () ==> ()) (big_op (M:=uPredUR M)).
130
131
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.

132
Lemma big_sep_app Ps Qs : [] (Ps ++ Qs)  [] Ps  [] Qs.
133
Proof. by rewrite big_op_app. Qed.
134

135
Lemma big_sep_contains Ps Qs : Qs `contains` Ps  [] Ps  [] Qs.
136
Proof. intros. apply uPred_included. by apply: big_op_contains. Qed.
137
Lemma big_sep_elem_of Ps P : P  Ps  [] Ps  P.
138
Proof. intros. apply uPred_included. by apply: big_sep_elem_of. Qed.
139
Lemma big_sep_elem_of_acc Ps P : P  Ps  [] Ps  P  (P - [] Ps).
140
Proof. intros [k ->]%elem_of_Permutation. by apply sep_mono_r, wand_intro_l. Qed.
141

142
(** ** Persistence *)
143
Global Instance big_sep_persistent Ps : PersistentL Ps  PersistentP ([] Ps).
144
145
146
147
148
149
150
151
152
153
154
155
156
Proof. induction 1; apply _. Qed.

Global Instance nil_persistent : PersistentL (@nil (uPred M)).
Proof. constructor. Qed.
Global Instance cons_persistent P Ps :
  PersistentP P  PersistentL Ps  PersistentL (P :: Ps).
Proof. by constructor. Qed.
Global Instance app_persistent Ps Ps' :
  PersistentL Ps  PersistentL Ps'  PersistentL (Ps ++ Ps').
Proof. apply Forall_app_2. Qed.

Global Instance fmap_persistent {A} (f : A  uPred M) xs :
  ( x, PersistentP (f x))  PersistentL (f <$> xs).
157
Proof. intros. apply Forall_fmap, Forall_forall; auto. Qed.
158
159
160
161
162
Global Instance zip_with_persistent {A B} (f : A  B  uPred M) xs ys :
  ( x y, PersistentP (f x y))  PersistentL (zip_with f xs ys).
Proof.
  unfold PersistentL=> ?; revert ys; induction xs=> -[|??]; constructor; auto.
Qed.
163
164
165
166
167
Global Instance imap_persistent {A} (f : nat  A  uPred M) xs :
  ( i x, PersistentP (f i x))  PersistentL (imap f xs).
Proof.
  rewrite /PersistentL /imap=> ?. generalize 0. induction xs; constructor; auto.
Qed.
168
169

(** ** Timelessness *)
170
Global Instance big_sep_timeless Ps : TimelessL Ps  TimelessP ([] Ps).
171
172
173
174
175
176
177
178
179
180
181
182
183
Proof. induction 1; apply _. Qed.

Global Instance nil_timeless : TimelessL (@nil (uPred M)).
Proof. constructor. Qed.
Global Instance cons_timeless P Ps :
  TimelessP P  TimelessL Ps  TimelessL (P :: Ps).
Proof. by constructor. Qed.
Global Instance app_timeless Ps Ps' :
  TimelessL Ps  TimelessL Ps'  TimelessL (Ps ++ Ps').
Proof. apply Forall_app_2. Qed.

Global Instance fmap_timeless {A} (f : A  uPred M) xs :
  ( x, TimelessP (f x))  TimelessL (f <$> xs).
184
Proof. intros. apply Forall_fmap, Forall_forall; auto. Qed.
185
186
187
188
189
Global Instance zip_with_timeless {A B} (f : A  B  uPred M) xs ys :
  ( x y, TimelessP (f x y))  TimelessL (zip_with f xs ys).
Proof.
  unfold TimelessL=> ?; revert ys; induction xs=> -[|??]; constructor; auto.
Qed.
190
191
192
193
194
195
196
197
198
199
200
201
Global Instance imap_timeless {A} (f : nat  A  uPred M) xs :
  ( i x, TimelessP (f i x))  TimelessL (imap f xs).
Proof.
  rewrite /TimelessL /imap=> ?. generalize 0. induction xs; constructor; auto.
Qed.

(** ** Big ops over lists *)
Section list.
  Context {A : Type}.
  Implicit Types l : list A.
  Implicit Types Φ Ψ : nat  A  uPred M.

202
  Lemma big_sepL_nil Φ : ([ list] ky  nil, Φ k y)  True.
203
204
  Proof. done. Qed.
  Lemma big_sepL_cons Φ x l :
205
    ([ list] ky  x :: l, Φ k y)  Φ 0 x  [ list] ky  l, Φ (S k) y.
206
  Proof. by rewrite big_opL_cons. Qed.
207
  Lemma big_sepL_singleton Φ x : ([ list] ky  [x], Φ k y)  Φ 0 x.
208
209
  Proof. by rewrite big_opL_singleton. Qed.
  Lemma big_sepL_app Φ l1 l2 :
210
211
    ([ list] ky  l1 ++ l2, Φ k y)
     ([ list] ky  l1, Φ k y)  ([ list] ky  l2, Φ (length l1 + k) y).
212
213
  Proof. by rewrite big_opL_app. Qed.

214
215
  Lemma big_sepL_mono Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
216
    ([ list] k  y  l, Φ k y)  [ list] k  y  l, Ψ k y.
217
  Proof. apply big_opL_forall; apply _. Qed.
218
219
  Lemma big_sepL_proper Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
220
    ([ list] k  y  l, Φ k y)  ([ list] k  y  l, Ψ k y).
221
  Proof. apply big_opL_proper. Qed.
222
223
224
  Lemma big_sepL_contains (Φ : A  uPred M) l1 l2 :
    l1 `contains` l2  ([ list] y  l2, Φ y)  [ list] y  l1, Φ y.
  Proof. intros ?. apply uPred_included. by apply: big_opL_contains. Qed.
225
226
227

  Global Instance big_sepL_mono' l :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
228
229
           (big_opL (M:=uPredUR M) l).
  Proof. intros f g Hf. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
230

231
232
233
234
  Lemma big_sepL_lookup_acc Φ l i x :
    l !! i = Some x 
    ([ list] ky  l, Φ k y)  Φ i x  (Φ i x - ([ list] ky  l, Φ k y)).
  Proof.
235
236
    intros Hli. apply big_sep_elem_of_acc, (elem_of_list_lookup_2 _ i).
    by rewrite list_lookup_imap Hli.
237
238
  Qed.

239
  Lemma big_sepL_lookup Φ l i x :
240
    l !! i = Some x  ([ list] ky  l, Φ k y)  Φ i x.
241
  Proof. intros. apply uPred_included. by apply: big_opL_lookup. Qed.
242

Robbert Krebbers's avatar
Robbert Krebbers committed
243
  Lemma big_sepL_elem_of (Φ : A  uPred M) l x :
244
    x  l  ([ list] y  l, Φ y)  Φ x.
245
  Proof. intros. apply uPred_included. by apply: big_opL_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
246

247
  Lemma big_sepL_fmap {B} (f : A  B) (Φ : nat  B  uPred M) l :
248
    ([ list] ky  f <$> l, Φ k y)  ([ list] ky  l, Φ k (f y)).
249
  Proof. by rewrite big_opL_fmap. Qed.
250
251

  Lemma big_sepL_sepL Φ Ψ l :
252
253
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
254
  Proof. by rewrite big_opL_opL. Qed.
255

256
257
258
259
260
  Lemma big_sepL_and Φ Ψ l :
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
  Proof. auto using big_sepL_mono with I. Qed.

261
  Lemma big_sepL_later Φ l :
262
     ([ list] kx  l, Φ k x)  ([ list] kx  l,  Φ k x).
263
  Proof. apply (big_opL_commute _). Qed.
264

Robbert Krebbers's avatar
Robbert Krebbers committed
265
266
267
268
  Lemma big_sepL_laterN Φ n l :
    ^n ([ list] kx  l, Φ k x)  ([ list] kx  l, ^n Φ k x).
  Proof. apply (big_opL_commute _). Qed.

269
  Lemma big_sepL_always Φ l :
270
    ( [ list] kx  l, Φ k x)  ([ list] kx  l,  Φ k x).
271
  Proof. apply (big_opL_commute _). Qed.
272
273

  Lemma big_sepL_always_if p Φ l :
274
    ?p ([ list] kx  l, Φ k x)  ([ list] kx  l, ?p Φ k x).
275
  Proof. apply (big_opL_commute _). Qed.
276
277
278

  Lemma big_sepL_forall Φ l :
    ( k x, PersistentP (Φ k x)) 
Ralf Jung's avatar
Ralf Jung committed
279
    ([ list] kx  l, Φ k x)  ( k x, l !! k = Some x  Φ k x).
280
281
282
283
284
285
286
  Proof.
    intros HΦ. apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
      apply impl_intro_l, pure_elim_l=> ?; by apply big_sepL_lookup. }
    revert Φ HΦ. induction l as [|x l IH]=> Φ HΦ.
    { rewrite big_sepL_nil; auto with I. }
    rewrite big_sepL_cons. rewrite -always_and_sep_l; apply and_intro.
287
    - by rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
288
289
290
291
    - rewrite -IH. apply forall_intro=> k; by rewrite (forall_elim (S k)).
  Qed.

  Lemma big_sepL_impl Φ Ψ l :
Ralf Jung's avatar
Ralf Jung committed
292
     ( k x, l !! k = Some x  Φ k x  Ψ k x)  ([ list] kx  l, Φ k x)
293
     [ list] kx  l, Ψ k x.
294
295
296
297
298
299
300
  Proof.
    rewrite always_and_sep_l. do 2 setoid_rewrite always_forall.
    setoid_rewrite always_impl; setoid_rewrite always_pure.
    rewrite -big_sepL_forall -big_sepL_sepL. apply big_sepL_mono; auto=> k x ?.
    by rewrite -always_wand_impl always_elim wand_elim_l.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
301
  Global Instance big_sepL_nil_persistent Φ :
302
    PersistentP ([ list] kx  [], Φ k x).
303
  Proof. rewrite /big_opL. apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
304
  Global Instance big_sepL_persistent Φ l :
305
    ( k x, PersistentP (Φ k x))  PersistentP ([ list] kx  l, Φ k x).
306
  Proof. rewrite /big_opL. apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
307
  Global Instance big_sepL_nil_timeless Φ :
308
    TimelessP ([ list] kx  [], Φ k x).
309
  Proof. rewrite /big_opL. apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
310
  Global Instance big_sepL_timeless Φ l :
311
    ( k x, TimelessP (Φ k x))  TimelessP ([ list] kx  l, Φ k x).
312
  Proof. rewrite /big_opL. apply _. Qed.
313
314
End list.

315

316
(** ** Big ops over finite maps *)
317
318
319
Section gmap.
  Context `{Countable K} {A : Type}.
  Implicit Types m : gmap K A.
320
  Implicit Types Φ Ψ : K  A  uPred M.
321

322
  Lemma big_sepM_mono Φ Ψ m1 m2 :
323
    m2  m1  ( k x, m2 !! k = Some x  Φ k x  Ψ k x) 
324
    ([ map] k  x  m1, Φ k x)  [ map] k  x  m2, Ψ k x.
325
  Proof.
326
    intros Hm HΦ. trans ([ map] kx  m2, Φ k x)%I.
327
328
329
    - apply uPred_included. apply: big_op_contains.
      by apply fmap_contains, map_to_list_contains.
    - apply big_opM_forall; apply _ || auto.
330
  Qed.
331
332
  Lemma big_sepM_proper Φ Ψ m :
    ( k x, m !! k = Some x  Φ k x  Ψ k x) 
333
    ([ map] k  x  m, Φ k x)  ([ map] k  x  m, Ψ k x).
334
  Proof. apply big_opM_proper. Qed.
335
336

  Global Instance big_sepM_mono' m :
337
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
338
339
           (big_opM (M:=uPredUR M) m).
  Proof. intros f g Hf. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
340

341
  Lemma big_sepM_empty Φ : ([ map] kx  , Φ k x)  True.
342
  Proof. by rewrite big_opM_empty. Qed.
343

344
  Lemma big_sepM_insert Φ m i x :
345
    m !! i = None 
346
    ([ map] ky  <[i:=x]> m, Φ k y)  Φ i x  [ map] ky  m, Φ k y.
347
  Proof. apply: big_opM_insert. Qed.
348

349
  Lemma big_sepM_delete Φ m i x :
350
    m !! i = Some x 
351
    ([ map] ky  m, Φ k y)  Φ i x  [ map] ky  delete i m, Φ k y.
352
  Proof. apply: big_opM_delete. Qed.
353

354
355
356
357
358
359
360
  Lemma big_sepM_lookup_acc Φ m i x :
    m !! i = Some x 
    ([ map] ky  m, Φ k y)  Φ i x  (Φ i x - ([ map] ky  m, Φ k y)).
  Proof.
    intros. rewrite big_sepM_delete //. by apply sep_mono_r, wand_intro_l.
  Qed.

361
  Lemma big_sepM_lookup Φ m i x :
362
    m !! i = Some x  ([ map] ky  m, Φ k y)  Φ i x.
363
364
  Proof. intros. apply uPred_included. by apply: big_opM_lookup. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
365
366
367
  Lemma big_sepM_lookup_dom (Φ : K  uPred M) m i :
    is_Some (m !! i)  ([ map] k_  m, Φ k)  Φ i.
  Proof. intros [x ?]. by eapply (big_sepM_lookup (λ i x, Φ i)). Qed.
368

369
  Lemma big_sepM_singleton Φ i x : ([ map] ky  {[i:=x]}, Φ k y)  Φ i x.
370
  Proof. by rewrite big_opM_singleton. Qed.
371

372
  Lemma big_sepM_fmap {B} (f : A  B) (Φ : K  B  uPred M) m :
373
    ([ map] ky  f <$> m, Φ k y)  ([ map] ky  m, Φ k (f y)).
374
  Proof. by rewrite big_opM_fmap. Qed.
375

Robbert Krebbers's avatar
Robbert Krebbers committed
376
377
378
  Lemma big_sepM_insert_override Φ m i x x' :
    m !! i = Some x  (Φ i x  Φ i x') 
    ([ map] ky  <[i:=x']> m, Φ k y)  ([ map] ky  m, Φ k y).
379
  Proof. apply: big_opM_insert_override. Qed.
380

Robbert Krebbers's avatar
Robbert Krebbers committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
  Lemma big_sepM_insert_override_1 Φ m i x x' :
    m !! i = Some x 
    ([ map] ky  <[i:=x']> m, Φ k y) 
      (Φ i x' - Φ i x) - ([ map] ky  m, Φ k y).
  Proof.
    intros ?. apply wand_intro_l.
    rewrite -insert_delete big_sepM_insert ?lookup_delete //.
    by rewrite assoc wand_elim_l -big_sepM_delete.
  Qed.

  Lemma big_sepM_insert_override_2 Φ m i x x' :
    m !! i = Some x 
    ([ map] ky  m, Φ k y) 
      (Φ i x - Φ i x') - ([ map] ky  <[i:=x']> m, Φ k y).
  Proof.
    intros ?. apply wand_intro_l.
    rewrite {1}big_sepM_delete //; rewrite assoc wand_elim_l.
    rewrite -insert_delete big_sepM_insert ?lookup_delete //.
  Qed.

401
  Lemma big_sepM_fn_insert {B} (Ψ : K  A  B  uPred M) (f : K  B) m i x b :
402
    m !! i = None 
403
404
       ([ map] ky  <[i:=x]> m, Ψ k y (<[i:=b]> f k))
     (Ψ i x b  [ map] ky  m, Ψ k y (f k)).
405
406
  Proof. apply: big_opM_fn_insert. Qed.

407
408
  Lemma big_sepM_fn_insert' (Φ : K  uPred M) m i x P :
    m !! i = None 
409
    ([ map] ky  <[i:=x]> m, <[i:=P]> Φ k)  (P  [ map] ky  m, Φ k).
410
  Proof. apply: big_opM_fn_insert'. Qed.
411

412
  Lemma big_sepM_sepM Φ Ψ m :
413
    ([ map] kx  m, Φ k x  Ψ k x)
414
     ([ map] kx  m, Φ k x)  ([ map] kx  m, Ψ k x).
415
  Proof. apply: big_opM_opM. Qed.
416

417
418
419
420
421
  Lemma big_sepM_and Φ Ψ m :
    ([ map] kx  m, Φ k x  Ψ k x)
     ([ map] kx  m, Φ k x)  ([ map] kx  m, Ψ k x).
  Proof. auto using big_sepM_mono with I. Qed.

422
  Lemma big_sepM_later Φ m :
423
     ([ map] kx  m, Φ k x)  ([ map] kx  m,  Φ k x).
424
  Proof. apply (big_opM_commute _). Qed.
425

Robbert Krebbers's avatar
Robbert Krebbers committed
426
427
428
429
  Lemma big_sepM_laterN Φ n m :
    ^n ([ map] kx  m, Φ k x)  ([ map] kx  m, ^n Φ k x).
  Proof. apply (big_opM_commute _). Qed.

430
  Lemma big_sepM_always Φ m :
431
    ( [ map] kx  m, Φ k x)  ([ map] kx  m,  Φ k x).
432
  Proof. apply (big_opM_commute _). Qed.
433
434

  Lemma big_sepM_always_if p Φ m :
435
    ?p ([ map] kx  m, Φ k x)  ([ map] kx  m, ?p Φ k x).
436
  Proof. apply (big_opM_commute _). Qed.
437
438
439

  Lemma big_sepM_forall Φ m :
    ( k x, PersistentP (Φ k x)) 
Ralf Jung's avatar
Ralf Jung committed
440
    ([ map] kx  m, Φ k x)  ( k x, m !! k = Some x  Φ k x).
441
442
443
  Proof.
    intros. apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
444
      apply impl_intro_l, pure_elim_l=> ?; by apply big_sepM_lookup. }
445
446
447
    induction m as [|i x m ? IH] using map_ind; [rewrite ?big_sepM_empty; auto|].
    rewrite big_sepM_insert // -always_and_sep_l. apply and_intro.
    - rewrite (forall_elim i) (forall_elim x) lookup_insert.
448
      by rewrite pure_True // True_impl.
449
    - rewrite -IH. apply forall_mono=> k; apply forall_mono=> y.
450
451
      apply impl_intro_l, pure_elim_l=> ?.
      rewrite lookup_insert_ne; last by intros ?; simplify_map_eq.
452
      by rewrite pure_True // True_impl.
453
454
455
  Qed.

  Lemma big_sepM_impl Φ Ψ m :
Ralf Jung's avatar
Ralf Jung committed
456
     ( k x, m !! k = Some x  Φ k x  Ψ k x)  ([ map] kx  m, Φ k x)
457
     [ map] kx  m, Ψ k x.
458
459
  Proof.
    rewrite always_and_sep_l. do 2 setoid_rewrite always_forall.
460
    setoid_rewrite always_impl; setoid_rewrite always_pure.
461
462
463
    rewrite -big_sepM_forall -big_sepM_sepM. apply big_sepM_mono; auto=> k x ?.
    by rewrite -always_wand_impl always_elim wand_elim_l.
  Qed.
464

Robbert Krebbers's avatar
Robbert Krebbers committed
465
  Global Instance big_sepM_empty_persistent Φ :
466
    PersistentP ([ map] kx  , Φ k x).
467
  Proof. rewrite /big_opM map_to_list_empty. apply _. Qed.
468
  Global Instance big_sepM_persistent Φ m :
469
    ( k x, PersistentP (Φ k x))  PersistentP ([ map] kx  m, Φ k x).
470
  Proof. intros. apply big_sep_persistent, fmap_persistent=>-[??] /=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
471
  Global Instance big_sepM_nil_timeless Φ :
472
    TimelessP ([ map] kx  , Φ k x).
473
  Proof. rewrite /big_opM map_to_list_empty. apply _. Qed.
474
  Global Instance big_sepM_timeless Φ m :
475
    ( k x, TimelessP (Φ k x))  TimelessP ([ map] kx  m, Φ k x).
476
  Proof. intro. apply big_sep_timeless, fmap_timeless=> -[??] /=; auto. Qed.
477
478
End gmap.

479

480
(** ** Big ops over finite sets *)
481
482
483
Section gset.
  Context `{Countable A}.
  Implicit Types X : gset A.
484
  Implicit Types Φ : A  uPred M.
485

486
  Lemma big_sepS_mono Φ Ψ X Y :
487
    Y  X  ( x, x  Y  Φ x  Ψ x) 
488
    ([ set] x  X, Φ x)  [ set] x  Y, Ψ x.
489
  Proof.
490
    intros HX HΦ. trans ([ set] x  Y, Φ x)%I.
491
492
493
    - apply uPred_included. apply: big_op_contains.
      by apply fmap_contains, elements_contains.
    - apply big_opS_forall; apply _ || auto.
494
  Qed.
495
496
  Lemma big_sepS_proper Φ Ψ X :
    ( x, x  X  Φ x  Ψ x) 
497
    ([ set] x  X, Φ x)  ([ set] x  X, Ψ x).
498
  Proof. apply: big_opS_proper. Qed.
499

500
  Global Instance big_sepS_mono' X :
501
502
503
     Proper (pointwise_relation _ () ==> ()) (big_opS (M:=uPredUR M) X).
  Proof. intros f g Hf. apply big_opS_forall; apply _ || intros; apply Hf. Qed.

504
  Lemma big_sepS_empty Φ : ([ set] x  , Φ x)  True.
505
  Proof. by rewrite big_opS_empty. Qed.
506

507
  Lemma big_sepS_insert Φ X x :
508
    x  X  ([ set] y  {[ x ]}  X, Φ y)  (Φ x  [ set] y  X, Φ y).
509
510
  Proof. apply: big_opS_insert. Qed.

511
  Lemma big_sepS_fn_insert {B} (Ψ : A  B  uPred M) f X x b :
512
    x  X 
513
514
       ([ set] y  {[ x ]}  X, Ψ y (<[x:=b]> f y))
     (Ψ x b  [ set] y  X, Ψ y (f y)).
515
516
  Proof. apply: big_opS_fn_insert. Qed.

517
  Lemma big_sepS_fn_insert' Φ X x P :
518
    x  X  ([ set] y  {[ x ]}  X, <[x:=P]> Φ y)  (P  [ set] y  X, Φ y).
519
  Proof. apply: big_opS_fn_insert'. Qed.
520

Robbert Krebbers's avatar
Robbert Krebbers committed
521
522
523
524
525
  Lemma big_sepS_union Φ X Y :
    X  Y 
    ([ set] y  X  Y, Φ y)  ([ set] y  X, Φ y)  ([ set] y  Y, Φ y).
  Proof. apply: big_opS_union. Qed.

526
  Lemma big_sepS_delete Φ X x :
527
    x  X  ([ set] y  X, Φ y)  Φ x  [ set] y  X  {[ x ]}, Φ y.
528
  Proof. apply: big_opS_delete. Qed.
529

530
  Lemma big_sepS_elem_of Φ X x : x  X  ([ set] y  X, Φ y)  Φ x.
531
  Proof. intros. apply uPred_included. by apply: big_opS_elem_of. Qed.
532

533
534
535
536
537
538
539
  Lemma big_sepS_elem_of_acc Φ X x :
    x  X 
    ([ set] y  X, Φ y)  Φ x  (Φ x - ([ set] y  X, Φ y)).
  Proof.
    intros. rewrite big_sepS_delete //. by apply sep_mono_r, wand_intro_l.
  Qed.

540
  Lemma big_sepS_singleton Φ x : ([ set] y  {[ x ]}, Φ y)  Φ x.
541
  Proof. apply: big_opS_singleton. Qed.
542

543
  Lemma big_sepS_filter (P : A  Prop) `{ x, Decision (P x)} Φ X :
Ralf Jung's avatar
Ralf Jung committed
544
    ([ set] y  filter P X, Φ y)  ([ set] y  X, P y  Φ y).
545
546
547
548
549
550
551
552
553
554
555
  Proof.
    induction X as [|x X ? IH] using collection_ind_L.
    { by rewrite filter_empty_L !big_sepS_empty. }
    destruct (decide (P x)).
    - rewrite filter_union_L filter_singleton_L //.
      rewrite !big_sepS_insert //; last set_solver.
      by rewrite IH pure_True // left_id.
    - rewrite filter_union_L filter_singleton_not_L // left_id_L.
      by rewrite !big_sepS_insert // IH pure_False // False_impl left_id.
  Qed.

556
557
558
559
560
561
562
563
564
565
566
  Lemma big_sepS_filter_acc (P : A  Prop) `{ y, Decision (P y)} Φ X Y :
    ( y, y  Y  P y  y  X) 
    ([ set] y  X, Φ y) -
      ([ set] y  Y, P y  Φ y) 
      (([ set] y  Y, P y  Φ y) - [ set] y  X, Φ y).
  Proof.
    intros ?. destruct (proj1 (subseteq_disjoint_union_L (filter P Y) X))
      as (Z&->&?); first set_solver.
    rewrite big_sepS_union // big_sepS_filter. by apply sep_mono_r, wand_intro_l.
  Qed.

567
  Lemma big_sepS_sepS Φ Ψ X :
568
    ([ set] y  X, Φ y  Ψ y)  ([ set] y  X, Φ y)  ([ set] y  X, Ψ y).
569
  Proof. apply: big_opS_opS. Qed.
570

571
572
573
574
  Lemma big_sepS_and Φ Ψ X :
    ([ set] y  X, Φ y  Ψ y)  ([ set] y  X, Φ y)  ([ set] y  X, Ψ y).
  Proof. auto using big_sepS_mono with I. Qed.

575
  Lemma big_sepS_later Φ X :  ([ set] y  X, Φ y)  ([ set] y  X,  Φ y).
576
  Proof. apply (big_opS_commute _). Qed.
577

Robbert Krebbers's avatar
Robbert Krebbers committed
578
579
580
581
  Lemma big_sepS_laterN Φ n X :
    ^n ([ set] y  X, Φ y)  ([ set] y  X, ^n Φ y).
  Proof. apply (big_opS_commute _). Qed.

582
  Lemma big_sepS_always Φ X :  ([ set] y  X, Φ y)  ([ set] y  X,  Φ y).
583
  Proof. apply (big_opS_commute _). Qed.
584

585
  Lemma big_sepS_always_if q Φ X :
586
    ?q ([ set] y  X, Φ y)  ([ set] y  X, ?q Φ y).
587
  Proof. apply (big_opS_commute _). Qed.
588
589

  Lemma big_sepS_forall Φ X :
Ralf Jung's avatar
Ralf Jung committed
590
    ( x, PersistentP (Φ x))  ([ set] x  X, Φ x)  ( x, x  X  Φ x).
591
592
593
  Proof.
    intros. apply (anti_symm _).
    { apply forall_intro=> x.
594
      apply impl_intro_l, pure_elim_l=> ?; by apply big_sepS_elem_of. }
595
    induction X as [|x X ? IH] using collection_ind_L.
596
597
    { rewrite big_sepS_empty; auto. }
    rewrite big_sepS_insert // -always_and_sep_l. apply and_intro.
598
    - by rewrite (forall_elim x) pure_True ?True_impl; last set_solver.
599
    - rewrite -IH. apply forall_mono=> y. apply impl_intro_l, pure_elim_l=> ?.
600
      by rewrite pure_True ?True_impl; last set_solver.
601
602
603
  Qed.

  Lemma big_sepS_impl Φ Ψ X :
Ralf Jung's avatar
Ralf Jung committed
604
     ( x, x  X  Φ x  Ψ x)  ([ set] x  X, Φ x)  [ set] x  X, Ψ x.
605
606
  Proof.
    rewrite always_and_sep_l always_forall.
607
    setoid_rewrite always_impl; setoid_rewrite always_pure.
608
609
610
    rewrite -big_sepS_forall -big_sepS_sepS. apply big_sepS_mono; auto=> x ?.
    by rewrite -always_wand_impl always_elim wand_elim_l.
  Qed.
611

612
  Global Instance big_sepS_empty_persistent Φ : PersistentP ([ set] x  , Φ x).
613
  Proof. rewrite /big_opS elements_empty. apply _. Qed.
614
  Global Instance big_sepS_persistent Φ X :
615
    ( x, PersistentP (Φ x))  PersistentP ([ set] x  X, Φ x).
616
  Proof. rewrite /big_opS. apply _. Qed.
617
  Global Instance big_sepS_nil_timeless Φ : TimelessP ([ set] x  , Φ x).
618
  Proof. rewrite /big_opS elements_empty. apply _. Qed.
619
  Global Instance big_sepS_timeless Φ X :
620
    ( x, TimelessP (Φ x))  TimelessP ([ set] x  X, Φ x).
621
  Proof. rewrite /big_opS. apply _. Qed.
622
End gset.
Robbert Krebbers's avatar
Robbert Krebbers committed
623

Robbert Krebbers's avatar
Robbert Krebbers committed
624
625
626
627
Lemma big_sepM_dom `{Countable K} {A} (Φ : K  uPred M) (m : gmap K A) :
  ([ map] k_  m, Φ k)  ([ set] k  dom _ m, Φ k).
Proof. apply: big_opM_dom. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

(** ** Big ops over finite multisets *)
Section gmultiset.
  Context `{Countable A}.
  Implicit Types X : gmultiset A.
  Implicit Types Φ : A  uPred M.

  Lemma big_sepMS_mono Φ Ψ X Y :
    Y  X  ( x, x  Y  Φ x  Ψ x) 
    ([ mset] x  X, Φ x)  [ mset] x  Y, Ψ x.
  Proof.
    intros HX HΦ. trans ([ mset] x  Y, Φ x)%I.
    - apply uPred_included. apply: big_op_contains.
      by apply fmap_contains, gmultiset_elements_contains.
    - apply big_opMS_forall; apply _ || auto.
  Qed.
  Lemma big_sepMS_proper Φ Ψ X :
    ( x, x  X  Φ x  Ψ x) 
    ([ mset] x  X, Φ x)  ([ mset] x  X, Ψ x).
  Proof. apply: big_opMS_proper. Qed.

  Global Instance big_sepMS_mono' X :
     Proper (pointwise_relation _ () ==> ()) (big_opMS (M:=uPredUR M) X).
  Proof. intros f g Hf. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.

  Lemma big_sepMS_empty Φ : ([ mset] x  , Φ x)  True.
  Proof. by rewrite big_opMS_empty. Qed.

  Lemma big_sepMS_union Φ X Y :
    ([ mset] y  X  Y, Φ y)  ([ mset] y  X, Φ y)  [ mset] y  Y, Φ y.
  Proof. apply: big_opMS_union. Qed.

  Lemma big_sepMS_delete Φ X x :
    x  X  ([ mset] y  X, Φ y)  Φ x  [ mset] y  X  {[ x ]}, Φ y.
  Proof. apply: big_opMS_delete. Qed.

  Lemma big_sepMS_elem_of Φ X x : x  X  ([ mset] y  X, Φ y)  Φ x.
  Proof. intros. apply uPred_included. by apply: big_opMS_elem_of. Qed. 

667
668
669
670
671
672
673
  Lemma big_sepMS_elem_of_acc Φ X x :
    x  X 
    ([ mset] y  X, Φ y)  Φ x  (Φ x - ([ mset] y  X, Φ y)).
  Proof.
    intros. rewrite big_sepMS_delete //. by apply sep_mono_r, wand_intro_l.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
674
675
676
677
678
679
680
  Lemma big_sepMS_singleton Φ x : ([ mset] y  {[ x ]}, Φ y)  Φ x.
  Proof. apply: big_opMS_singleton. Qed.

  Lemma big_sepMS_sepMS Φ Ψ X :
    ([ mset] y  X, Φ y  Ψ y)  ([ mset] y  X, Φ y)  ([ mset] y  X, Ψ y).
  Proof. apply: big_opMS_opMS. Qed.

681
682
683
684
  Lemma big_sepMS_and Φ Ψ X :
    ([ mset] y  X, Φ y  Ψ y)  ([ mset] y  X, Φ y)  ([ mset] y  X, Ψ y).
  Proof. auto using big_sepMS_mono with I. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
685
686
687
  Lemma big_sepMS_later Φ X :  ([ mset] y  X, Φ y)  ([ mset] y  X,  Φ y).
  Proof. apply (big_opMS_commute _). Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
688
689
690
691
  Lemma big_sepMS_laterN Φ n X :
    ^n ([ mset] y  X, Φ y)  ([ mset] y  X, ^n Φ y).
  Proof. apply (big_opMS_commute _). Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
  Lemma big_sepMS_always Φ X :  ([ mset] y  X, Φ y)  ([ mset] y  X,  Φ y).
  Proof. apply (big_opMS_commute _). Qed.

  Lemma big_sepMS_always_if q Φ X :
    ?q ([ mset] y  X, Φ y)  ([ mset] y  X, ?q Φ y).
  Proof. apply (big_opMS_commute _). Qed.

  Global Instance big_sepMS_empty_persistent Φ : PersistentP ([ mset] x  , Φ x).
  Proof. rewrite /big_opMS gmultiset_elements_empty. apply _. Qed.