agree.v 17.6 KB
Newer Older
1
From iris.algebra Require Export cmra.
Ralf Jung's avatar
Ralf Jung committed
2
From iris.algebra Require Import list.
3
From iris.base_logic Require Import base_logic.
Ralf Jung's avatar
Ralf Jung committed
4 5 6 7
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Local Arguments op _ _ _ !_ /.
Local Arguments pcore _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
Record agree (A : Type) : Type := Agree {
Ralf Jung's avatar
Ralf Jung committed
10 11
  agree_car : A;
  agree_with : list A;
Robbert Krebbers's avatar
Robbert Krebbers committed
12
}.
Ralf Jung's avatar
Ralf Jung committed
13 14 15 16 17 18 19 20 21 22
Arguments Agree {_} _ _.
Arguments agree_car {_} _.
Arguments agree_with {_} _.

(* Some theory about set-inclusion on lists and lists of which all elements are equal.
   TODO: Move this elsewhere. *)
Definition list_setincl `(R : relation A) (al bl : list A) :=
   a, a  al   b, b  bl  R a b.
Definition list_setequiv `(R : relation A) (al bl : list A) :=
  list_setincl R al bl  list_setincl R bl al.
23 24 25
(* list_agrees is carefully written such that, when applied to a
   singleton, it is convertible to True. This makes working with
   agreement much more pleasant. *)
Ralf Jung's avatar
Ralf Jung committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Definition list_agrees `(R : relation A) (al : list A) :=
  match al with
  | [] => True
  | [a] => True
  | a :: al =>  b, b  al  R a b
  end.

Lemma list_agrees_alt `(R : relation A) `{Equivalence _ R} al :
  list_agrees R al  ( a b, a  al  b  al  R a b).
Proof.
  destruct al as [|a [|b al]].
  - split; last done. intros _ ? ? []%elem_of_nil.
  - split; last done. intros _ ? ? ->%elem_of_list_singleton ->%elem_of_list_singleton. done.
  - simpl. split.
    + intros Hl a' b' [->|Ha']%elem_of_cons.
      * intros [->|Hb']%elem_of_cons; first done. auto.
      * intros [->|Hb']%elem_of_cons; first by (symmetry; auto).
        trans a; last by auto. symmetry. auto.
    + intros Hl b' Hb'. apply Hl; set_solver.
Qed.

Section list_theory.
  Context `(R: relation A) `{Equivalence A R}.
Ralf Jung's avatar
Ralf Jung committed
49
  Collection Hyps := Type H.
50
  Local Set Default Proof Using "Hyps".
Ralf Jung's avatar
Ralf Jung committed
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

  Global Instance: PreOrder (list_setincl R).
  Proof.
    split.
    - intros al a Ha. set_solver.
    - intros al bl cl Hab Hbc a Ha. destruct (Hab _ Ha) as (b & Hb & Rab).
      destruct (Hbc _ Hb) as (c & Hc & Rbc). exists c. split; first done.
      by trans b.
  Qed.

  Global Instance: Equivalence (list_setequiv R).
  Proof.
    split.
    - by split.
    - intros ?? [??]. split; auto.
    - intros ??? [??] [??]. split; etrans; done.
  Qed.

  Global Instance list_setincl_subrel `(R' : relation A) :
    subrelation R R'  subrelation (list_setincl R) (list_setincl R').
Ralf Jung's avatar
Ralf Jung committed
71
  Proof using.
Ralf Jung's avatar
Ralf Jung committed
72 73 74 75 76 77
    intros HRR' al bl Hab. intros a Ha. destruct (Hab _ Ha) as (b & Hb & HR).
    exists b. split; first done. exact: HRR'.
  Qed.

  Global Instance list_setequiv_subrel `(R' : relation A) :
    subrelation R R'  subrelation (list_setequiv R) (list_setequiv R').
Ralf Jung's avatar
Ralf Jung committed
78
  Proof using. intros HRR' ?? [??]. split; exact: list_setincl_subrel. Qed.
Ralf Jung's avatar
Ralf Jung committed
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

  Global Instance list_setincl_perm : subrelation () (list_setincl R).
  Proof.
    intros al bl Hab a Ha. exists a. split; last done.
    by rewrite -Hab.
  Qed.

  Global Instance list_setincl_app l :
    Proper (list_setincl R ==> list_setincl R) (app l).
  Proof.
    intros al bl Hab a [Ha|Ha]%elem_of_app.
    - exists a. split; last done. apply elem_of_app. by left.
    - destruct (Hab _ Ha) as (b & Hb & HR). exists b. split; last done.
      apply elem_of_app. by right.
  Qed.

  Global Instance list_setequiv_app l :
    Proper (list_setequiv R ==> list_setequiv R) (app l).
  Proof. intros al bl [??]. split; apply list_setincl_app; done. Qed.

  Global Instance: subrelation () (flip (list_setincl R)).
  Proof. intros ???. apply list_setincl_perm. done. Qed.

  Global Instance list_agrees_setincl :
    Proper (flip (list_setincl R) ==> impl) (list_agrees R).
  Proof.
    move=> al bl /= Hab /list_agrees_alt Hal. apply (list_agrees_alt _) => a b Ha Hb.
    destruct (Hab _ Ha) as (a' & Ha' & HRa).
    destruct (Hab _ Hb) as (b' & Hb' & HRb).
    trans a'; first done. etrans; last done.
    eapply Hal; done.
  Qed.

  Global Instance list_agrees_setequiv :
    Proper (list_setequiv R ==> iff) (list_agrees R).
  Proof.
    intros ?? [??]. split; by apply: list_agrees_setincl.
  Qed.

  Lemma list_setincl_contains al bl :
    ( x, x  al  x  bl)  list_setincl R al bl.
  Proof. intros Hin a Ha. exists a. split; last done. naive_solver. Qed.

  Lemma list_setequiv_equiv al bl :
    ( x, x  al  x  bl)  list_setequiv R al bl.
  Proof.
    intros Hin. split; apply list_setincl_contains; naive_solver.
  Qed.

  Lemma list_agrees_contains al bl :
    ( x, x  bl  x  al) 
    list_agrees R al  list_agrees R bl.
  Proof. intros ?. by eapply (list_agrees_setincl _),list_setincl_contains. Qed.

  Lemma list_agrees_equiv al bl :
    ( x, x  bl  x  al) 
    list_agrees R al  list_agrees R bl.
  Proof. intros ?. by eapply (list_agrees_setequiv _), list_setequiv_equiv. Qed.

  Lemma list_setincl_singleton a b :
    R a b  list_setincl R [a] [b].
  Proof.
    intros HR c ->%elem_of_list_singleton. exists b. split; last done.
    apply elem_of_list_singleton. done.
  Qed.

  Lemma list_setincl_singleton_rev a b :
    list_setincl R [a] [b]  R a b.
Ralf Jung's avatar
Ralf Jung committed
147
  Proof using.
Ralf Jung's avatar
Ralf Jung committed
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    intros Hl. destruct (Hl a) as (? & ->%elem_of_list_singleton & HR); last done.
    by apply elem_of_list_singleton.
  Qed.

  Lemma list_setequiv_singleton a b :
    R a b  list_setequiv R [a] [b].
  Proof. intros ?. split; by apply list_setincl_singleton. Qed.

  Lemma list_agrees_iff_setincl al a :
    a  al  list_agrees R al  list_setincl R al [a].
  Proof.
    intros Hin. split.
    - move=>/list_agrees_alt Hl b Hb. exists a. split; first set_solver+. exact: Hl.
    - intros Hl. apply (list_agrees_alt _)=> b c Hb Hc.
      destruct (Hl _ Hb) as (? & ->%elem_of_list_singleton & ?).
      destruct (Hl _ Hc) as (? & ->%elem_of_list_singleton & ?).
      by trans a.
  Qed.

  Lemma list_setincl_singleton_in al a :
    a  al  list_setincl R [a] al.
  Proof.
    intros Hin b ->%elem_of_list_singleton. exists a. split; done.
  Qed.

  Global Instance list_setincl_ext : subrelation (Forall2 R) (list_setincl R).
  Proof.
    move=>al bl. induction 1.
    - intros ? []%elem_of_nil.
    - intros a [->|Ha]%elem_of_cons.
      + eexists. split; first constructor. done.
      + destruct (IHForall2 _ Ha) as (b & ? & ?).
        exists b. split; first by constructor. done.
  Qed.

  Global Instance list_setequiv_ext : subrelation (Forall2 R) (list_setequiv R).
  Proof.
    move=>al bl ?. split; apply list_setincl_ext; done.
  Qed.

  Lemma list_agrees_subrel `(R' : relation A) `{Equivalence _ R'} :
    subrelation R R'   l, list_agrees R l  list_agrees R' l.
  Proof. move=> HR l /list_agrees_alt Hl. apply (list_agrees_alt _)=> a b Ha Hb. by apply HR, Hl. Qed.

  Section fmap.
    Context `(R' : relation B) (f : A  B) {Hf: Proper (R ==> R') f}.
Ralf Jung's avatar
Ralf Jung committed
194
    Collection Hyps := Type Hf.
195
    Local Set Default Proof Using "Hyps".
196

Ralf Jung's avatar
Ralf Jung committed
197 198
    Global Instance list_setincl_fmap :
      Proper (list_setincl R ==> list_setincl R') (fmap f).
Ralf Jung's avatar
Ralf Jung committed
199
    Proof using Hf.
Ralf Jung's avatar
Ralf Jung committed
200 201 202 203
      intros al bl Hab a' (a & -> & Ha)%elem_of_list_fmap.
      destruct (Hab _ Ha) as (b & Hb & HR). exists (f b).
      split; first eapply elem_of_list_fmap; eauto.
    Qed.
204

Ralf Jung's avatar
Ralf Jung committed
205 206
    Global Instance list_setequiv_fmap :
      Proper (list_setequiv R ==> list_setequiv R') (fmap f).
Ralf Jung's avatar
Ralf Jung committed
207
    Proof using Hf. intros ?? [??]. split; apply list_setincl_fmap; done. Qed.
Ralf Jung's avatar
Ralf Jung committed
208 209 210

    Lemma list_agrees_fmap `{Equivalence _ R'} al :
      list_agrees R al  list_agrees R' (f <$> al).
211
    Proof using Type*.
Ralf Jung's avatar
Ralf Jung committed
212
      move=> /list_agrees_alt Hl. apply (list_agrees_alt R') => a' b'.
Ralf Jung's avatar
Ralf Jung committed
213 214 215 216 217
      intros (a & -> & Ha)%elem_of_list_fmap (b & -> & Hb)%elem_of_list_fmap.
      apply Hf. exact: Hl.
    Qed.
  End fmap.
End list_theory.
Robbert Krebbers's avatar
Robbert Krebbers committed
218 219

Section agree.
220
Local Set Default Proof Using "Type".
221
Context {A : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
222

Ralf Jung's avatar
Ralf Jung committed
223
Definition agree_list (x : agree A) := agree_car x :: agree_with x.
224

Ralf Jung's avatar
Ralf Jung committed
225 226 227 228
Instance agree_validN : ValidN (agree A) := λ n x,
  list_agrees (dist n) (agree_list x).
Instance agree_valid : Valid (agree A) := λ x,
  list_agrees (equiv) (agree_list x).
229

230
Instance agree_dist : Dist (agree A) := λ n x y,
Ralf Jung's avatar
Ralf Jung committed
231 232 233 234 235 236 237
  list_setequiv (dist n) (agree_list x) (agree_list y).
Instance agree_equiv : Equiv (agree A) := λ x y,
   n, list_setequiv (dist n) (agree_list x) (agree_list y).

Definition agree_dist_incl n (x y : agree A) :=
  list_setincl (dist n) (agree_list x) (agree_list y).

238
Definition agree_ofe_mixin : OfeMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
239 240
Proof.
  split.
Ralf Jung's avatar
Ralf Jung committed
241 242 243 244 245 246
  - intros x y; split; intros Hxy; done.
  - split; rewrite /dist /agree_dist; intros ? *.
    + reflexivity.
    + by symmetry.
    + intros. etrans; eassumption.
  - intros ???. apply list_setequiv_subrel=>??. apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
247
Qed.
248 249
Canonical Structure agreeC := OfeT (agree A) agree_ofe_mixin.

250
Program Instance agree_op : Op (agree A) := λ x y,
251
  {| agree_car := agree_car x;
Ralf Jung's avatar
Ralf Jung committed
252
     agree_with := agree_with x ++ agree_car y :: agree_with y |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
253
Instance agree_pcore : PCore (agree A) := Some.
254

255
Instance: Comm () (@op (agree A) _).
Ralf Jung's avatar
Ralf Jung committed
256 257
Proof. intros x y n. apply: list_setequiv_equiv. set_solver. Qed.

Ralf Jung's avatar
...  
Ralf Jung committed
258
Lemma agree_idemp (x : agree A) : x  x  x.
Ralf Jung's avatar
Ralf Jung committed
259 260
Proof. intros n. apply: list_setequiv_equiv. set_solver. Qed.

261 262
Instance:  n : nat, Proper (dist n ==> impl) (@validN (agree A) _ n).
Proof.
Ralf Jung's avatar
Ralf Jung committed
263 264
  intros n x y. rewrite /dist /validN /agree_dist /agree_validN.
  by intros ->.
265
Qed.
Ralf Jung's avatar
Ralf Jung committed
266 267 268 269 270 271
Instance:  n : nat, Proper (equiv ==> iff) (@validN (agree A) _ n).
Proof.
  intros n ???. assert (x {n} y) as Hxy by by apply equiv_dist.
  split; rewrite Hxy; done.
Qed.

272
Instance:  x : agree A, NonExpansive (op x).
Robbert Krebbers's avatar
Robbert Krebbers committed
273
Proof.
274
  intros x n y1 y2. rewrite /dist /agree_dist /agree_list /=.
Ralf Jung's avatar
Ralf Jung committed
275
  rewrite !app_comm_cons. apply: list_setequiv_app.
Robbert Krebbers's avatar
Robbert Krebbers committed
276
Qed.
277
Instance: NonExpansive2 (@op (agree A) _).
278
Proof. by intros n x1 x2 Hx y1 y2 Hy; rewrite Hy !(comm _ _ y2) Hx. Qed.
279
Instance: Proper (() ==> () ==> ()) op := ne_proper_2 _.
280
Instance: Assoc () (@op (agree A) _).
Ralf Jung's avatar
Ralf Jung committed
281
Proof. intros x y z n. apply: list_setequiv_equiv. set_solver. Qed.
282

Robbert Krebbers's avatar
Robbert Krebbers committed
283 284 285 286 287
Lemma agree_included (x y : agree A) : x  y  y  x  y.
Proof.
  split; [|by intros ?; exists y].
  by intros [z Hz]; rewrite Hz assoc agree_idemp.
Qed.
Ralf Jung's avatar
Ralf Jung committed
288 289 290 291 292 293 294
Lemma agree_op_inv_inclN n x1 x2 : {n} (x1  x2)  agree_dist_incl n x1 x2.
Proof.
  rewrite /validN /= => /list_agrees_alt Hv a /elem_of_cons Ha. exists (agree_car x2).
  split; first by constructor. eapply Hv.
  - simpl. destruct Ha as [->|Ha]; set_solver.
  - simpl. set_solver+.
Qed.
295

Ralf Jung's avatar
Ralf Jung committed
296 297 298 299 300
Lemma agree_op_invN n (x1 x2 : agree A) : {n} (x1  x2)  x1 {n} x2.
Proof.
  intros Hxy. split; apply agree_op_inv_inclN; first done. by rewrite comm.
Qed.

301 302 303
Lemma agree_valid_includedN n (x y : agree A) : {n} y  x {n} y  x {n} y.
Proof.
  move=> Hval [z Hy]; move: Hval; rewrite Hy.
Ralf Jung's avatar
Ralf Jung committed
304
  by move=> /agree_op_invN->; rewrite agree_idemp.
305 306
Qed.

307
Definition agree_cmra_mixin : CMRAMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
308
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
309
  apply cmra_total_mixin; try apply _ || by eauto.
Ralf Jung's avatar
Ralf Jung committed
310 311 312 313 314 315
  - move=>x. split.
    + move=>/list_agrees_alt Hx n. apply (list_agrees_alt _)=> a b Ha Hb.
      apply equiv_dist, Hx; done.
    + intros Hx. apply (list_agrees_alt _)=> a b Ha Hb.
      apply equiv_dist=>n. eapply (list_agrees_alt _); first (by apply Hx); done.
  - intros n x. apply (list_agrees_subrel _ _)=>??. apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
316
  - intros x. apply agree_idemp.
Ralf Jung's avatar
Ralf Jung committed
317
  - intros ??? Hl. apply: list_agrees_contains Hl. set_solver.
318
  - intros n x y1 y2 Hval Hx; exists x, x; simpl; split.
319
    + by rewrite agree_idemp.
Ralf Jung's avatar
Ralf Jung committed
320
    + by move: Hval; rewrite Hx; move=> /agree_op_invN->; rewrite agree_idemp.
Robbert Krebbers's avatar
Robbert Krebbers committed
321
Qed.
322
Canonical Structure agreeR : cmraT := CMRAT (agree A) agree_cmra_mixin.
323

Robbert Krebbers's avatar
Robbert Krebbers committed
324 325
Global Instance agree_total : CMRATotal agreeR.
Proof. rewrite /CMRATotal; eauto. Qed.
326
Global Instance agree_persistent (x : agree A) : Persistent x.
Robbert Krebbers's avatar
Robbert Krebbers committed
327
Proof. by constructor. Qed.
328

329
Global Instance agree_discrete : Discrete A  CMRADiscrete agreeR.
Ralf Jung's avatar
Ralf Jung committed
330 331 332 333 334 335 336 337 338 339 340
Proof.
  intros HD. split.
  - intros x y Hxy n. eapply list_setequiv_subrel; last exact Hxy. clear -HD.
    intros x y ?. apply equiv_dist, HD. done.
  - rewrite /valid /cmra_valid /agree_valid /validN /cmra_validN /agree_validN /=.
    move=> x. apply (list_agrees_subrel _ _). clear -HD.
    intros x y. apply HD.
Qed.

Definition to_agree (x : A) : agree A :=
  {| agree_car := x; agree_with := [] |}.
341

342
Global Instance to_agree_ne : NonExpansive to_agree.
Ralf Jung's avatar
Ralf Jung committed
343 344 345 346
Proof.
  intros x1 x2 Hx; rewrite /= /dist /agree_dist /=.
  exact: list_setequiv_singleton.
Qed.
347
Global Instance to_agree_proper : Proper (() ==> ()) to_agree := ne_proper _.
348

Ralf Jung's avatar
Ralf Jung committed
349
Global Instance to_agree_injN n : Inj (dist n) (dist n) (to_agree).
350
Proof. intros a b [Hxy%list_setincl_singleton_rev _]. done. Qed.
Ralf Jung's avatar
Ralf Jung committed
351
Global Instance to_agree_inj : Inj () () (to_agree).
352
Proof. intros a b ?. apply equiv_dist=>n. by apply to_agree_injN, equiv_dist. Qed.
353

354
Lemma to_agree_uninjN n (x : agree A) : {n} x   y : A, to_agree y {n} x.
355
Proof.
356
  intros Hl. exists (agree_car x). rewrite /dist /agree_dist /=. split.
Ralf Jung's avatar
Ralf Jung committed
357 358 359 360
  - apply: list_setincl_singleton_in. set_solver+.
  - apply (list_agrees_iff_setincl _); first set_solver+. done.
Qed.

361 362
Lemma to_agree_uninj (x : agree A) :  x   y : A, to_agree y  x.
Proof.
363
  intros Hl. exists (agree_car x). rewrite /dist /agree_dist /=. split.
364 365 366 367 368 369
  - apply: list_setincl_singleton_in. set_solver+.
  - apply (list_agrees_iff_setincl _); first set_solver+.
    eapply list_agrees_subrel; last exact: Hl; [apply _..|].
    intros ???. by apply equiv_dist.
Qed.

Ralf Jung's avatar
Ralf Jung committed
370 371 372 373 374 375 376
Lemma to_agree_included (a b : A) : to_agree a  to_agree b  a  b.
Proof.
  split.
  - intros (x & Heq). apply equiv_dist=>n. destruct (Heq n) as [_ Hincl].
    (* TODO: This could become a generic lemma about list_setincl. *)
    destruct (Hincl a) as (? & ->%elem_of_list_singleton & ?); first set_solver+.
    done.
377
  - by intros ->.
378 379 380 381 382 383 384 385 386 387
Qed.

Global Instance agree_cancelable (x : agree A) : Cancelable x.
Proof.
  intros n y z Hv Heq.
  destruct (to_agree_uninjN n x) as [x' EQx]; first by eapply cmra_validN_op_l.
  destruct (to_agree_uninjN n y) as [y' EQy]; first by eapply cmra_validN_op_r.
  destruct (to_agree_uninjN n z) as [z' EQz].
  { eapply (cmra_validN_op_r n x z). by rewrite -Heq. }
  assert (Hx'y' : x' {n} y').
388
  { apply (inj to_agree), agree_op_invN. by rewrite EQx EQy. }
389
  assert (Hx'z' : x' {n} z').
390
  { apply (inj to_agree), agree_op_invN. by rewrite EQx EQz -Heq. }
391 392 393
  by rewrite -EQy -EQz -Hx'y' -Hx'z'.
Qed.

394 395 396 397 398 399 400 401 402 403
Lemma agree_op_inv (x1 x2 : agree A) :  (x1  x2)  x1  x2.
Proof.
  intros ?. apply equiv_dist=>n. by apply agree_op_invN, cmra_valid_validN.
Qed.
Lemma agree_op_inv' (a1 a2 : A) :  (to_agree a1  to_agree a2)  a1  a2.
Proof. by intros ?%agree_op_inv%(inj _). Qed.
Lemma agree_op_invL' `{!LeibnizEquiv A} (a1 a2 : A) :
   (to_agree a1  to_agree a2)  a1 = a2.
Proof. by intros ?%agree_op_inv'%leibniz_equiv. Qed.

404
(** Internalized properties *)
405
Lemma agree_equivI {M} a b : to_agree a  to_agree b  (a  b : uPred M).
406
Proof.
Ralf Jung's avatar
Ralf Jung committed
407 408 409
  uPred.unseal. do 2 split.
  - intros Hx. exact: to_agree_injN.
  - intros Hx. exact: to_agree_ne.
410
Qed.
411
Lemma agree_validI {M} x y :  (x  y)  (x  y : uPred M).
Ralf Jung's avatar
Ralf Jung committed
412
Proof. uPred.unseal; split=> r n _ ?; by apply: agree_op_invN. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
413 414
End agree.

415
Instance: Params (@to_agree) 1.
416
Arguments agreeC : clear implicits.
417
Arguments agreeR : clear implicits.
418

419
Program Definition agree_map {A B} (f : A  B) (x : agree A) : agree B :=
Ralf Jung's avatar
Ralf Jung committed
420
  {| agree_car := f (agree_car x); agree_with := f <$> (agree_with x) |}.
421
Lemma agree_map_id {A} (x : agree A) : agree_map id x = x.
Ralf Jung's avatar
Ralf Jung committed
422
Proof. rewrite /agree_map /= list_fmap_id. by destruct x. Qed.
423 424
Lemma agree_map_compose {A B C} (f : A  B) (g : B  C) (x : agree A) :
  agree_map (g  f) x = agree_map g (agree_map f x).
Ralf Jung's avatar
Ralf Jung committed
425
Proof. rewrite /agree_map /= list_fmap_compose. done. Qed.
426

Robbert Krebbers's avatar
Robbert Krebbers committed
427
Section agree_map.
428
  Context {A B : ofeT} (f : A  B) `{Hf: NonExpansive f}.
Ralf Jung's avatar
Ralf Jung committed
429
  Collection Hyps := Type Hf.
430
  Instance agree_map_ne : NonExpansive (agree_map f).
Ralf Jung's avatar
Ralf Jung committed
431
  Proof using Hyps.
432
    intros n x y Hxy.
Ralf Jung's avatar
Ralf Jung committed
433
    change (list_setequiv (dist n)(f <$> (agree_list x))(f <$> (agree_list y))).
434
    eapply list_setequiv_fmap; last exact Hxy. apply _.
Ralf Jung's avatar
Ralf Jung committed
435
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
436
  Instance agree_map_proper : Proper (() ==> ()) (agree_map f) := ne_proper _.
Ralf Jung's avatar
Ralf Jung committed
437

438 439
  Lemma agree_map_ext (g : A  B) x :
    ( x, f x  g x)  agree_map f x  agree_map g x.
Ralf Jung's avatar
Ralf Jung committed
440 441 442 443 444 445
  Proof.
    intros Hfg n. apply: list_setequiv_ext.
    change (f <$> (agree_list x) {n} g <$> (agree_list x)).
    apply list_fmap_ext_ne=>y. by apply equiv_dist.
  Qed.

446
  Global Instance agree_map_monotone : CMRAMonotone (agree_map f).
Ralf Jung's avatar
Ralf Jung committed
447
  Proof using Hyps.
Robbert Krebbers's avatar
Robbert Krebbers committed
448
    split; first apply _.
Ralf Jung's avatar
Ralf Jung committed
449 450 451
    - intros n x. rewrite /cmra_validN /validN /= /agree_validN /= => ?.
      change (list_agrees (dist n) (f <$> agree_list x)).
      eapply (list_agrees_fmap _ _ _); done.
Robbert Krebbers's avatar
Robbert Krebbers committed
452
    - intros x y; rewrite !agree_included=> ->.
Ralf Jung's avatar
Ralf Jung committed
453 454
      rewrite /equiv /agree_equiv /agree_map /agree_op /agree_list /=.
      rewrite !fmap_app=>n. apply: list_setequiv_equiv. set_solver+.
Robbert Krebbers's avatar
Robbert Krebbers committed
455 456
  Qed.
End agree_map.
Robbert Krebbers's avatar
Robbert Krebbers committed
457

458 459
Definition agreeC_map {A B} (f : A -n> B) : agreeC A -n> agreeC B :=
  CofeMor (agree_map f : agreeC A  agreeC B).
460
Instance agreeC_map_ne A B : NonExpansive (@agreeC_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
461
Proof.
462
  intros n f g Hfg x. apply: list_setequiv_ext.
Ralf Jung's avatar
Ralf Jung committed
463 464
  change (f <$> (agree_list x) {n} g <$> (agree_list x)).
  apply list_fmap_ext_ne. done.
Robbert Krebbers's avatar
Robbert Krebbers committed
465
Qed.
Ralf Jung's avatar
Ralf Jung committed
466

467 468 469 470
Program Definition agreeRF (F : cFunctor) : rFunctor := {|
  rFunctor_car A B := agreeR (cFunctor_car F A B);
  rFunctor_map A1 A2 B1 B2 fg := agreeC_map (cFunctor_map F fg)
|}.
471 472 473
Next Obligation.
  intros ? A1 A2 B1 B2 n ???; simpl. by apply agreeC_map_ne, cFunctor_ne.
Qed.
474 475 476 477 478 479 480 481
Next Obligation.
  intros F A B x; simpl. rewrite -{2}(agree_map_id x).
  apply agree_map_ext=>y. by rewrite cFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x; simpl. rewrite -agree_map_compose.
  apply agree_map_ext=>y; apply cFunctor_compose.
Qed.
482 483 484 485 486 487 488

Instance agreeRF_contractive F :
  cFunctorContractive F  rFunctorContractive (agreeRF F).
Proof.
  intros ? A1 A2 B1 B2 n ???; simpl.
  by apply agreeC_map_ne, cFunctor_contractive.
Qed.