ltac_tactics.v 109 KB
Newer Older
1
From iris.proofmode Require Import coq_tactics reduction.
2
From iris.proofmode Require Import base intro_patterns spec_patterns sel_patterns.
3
From iris.bi Require Export bi telescopes.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
From stdpp Require Import namespaces.
From iris.proofmode Require Export classes notation.
From stdpp Require Import hlist pretty.
Set Default Proof Using "Type".
Export ident.

(** For most of the tactics, we want to have tight control over the order and
way in which type class inference is performed. To that end, many tactics make
use of [notypeclasses refine] and the [iSolveTC] tactic to manually invoke type
class inference.

The tactic [iSolveTC] does not use [apply _], as that often leads to issues
because it will try to solve all evars whose type is a typeclass, in
dependency order (according to Matthieu). If one fails, it aborts. However, we
generally rely on progress on the main goal to be solved to make progress
elsewhere. With [typeclasses eauto], that seems to work better.

A drawback of [typeclasses eauto] is that it is multi-success, i.e. whenever
subsequent tactics fail, it will backtrack to [typeclasses eauto] to try the
next type class instance. This is almost always undesired and leads to poor
performance and horrible error messages, so we wrap it in a [once]. *)
Ltac iSolveTC :=
  solve [once (typeclasses eauto)].

28
29
30
(** Tactic used for solving side-conditions arising from TC resolution in iMod
and iInv. *)
Ltac iSolveSideCondition :=
31
  split_and?; try solve [ fast_done | solve_ndisj ].
32

33
34
35
36
37
38
39
(** Used for printing [string]s and [ident]s. *)
Ltac pretty_ident H :=
  lazymatch H with
  | INamed ?H => H
  | ?H => H
  end.

40
41
42
43
44
45
46
47
(** * Misc *)

Ltac iMissingHyps Hs :=
  let Δ :=
    lazymatch goal with
    | |- envs_entails ?Δ _ => Δ
    | |- context[ envs_split _ _ ?Δ ] => Δ
    end in
48
  let Hhyps := pm_eval (envs_dom Δ) in
49
50
51
52
  eval vm_compute in (list_difference Hs Hhyps).

Ltac iTypeOf H :=
  let Δ := match goal with |- envs_entails ?Δ _ => Δ end in
53
  pm_eval (envs_lookup H Δ).
54

55
56
57
Ltac iBiOfGoal :=
  match goal with |- @envs_entails ?PROP _ _ => PROP end.

58
59
60
61
62
63
64
65
66
67
Tactic Notation "iMatchHyp" tactic1(tac) :=
  match goal with
  | |- context[ environments.Esnoc _ ?x ?P ] => tac x P
  end.

(** * Start a proof *)
Tactic Notation "iStartProof" :=
  lazymatch goal with
  | |- envs_entails _ _ => idtac
  | |- ?φ => notypeclasses refine (as_emp_valid_2 φ _ _);
68
               [iSolveTC || fail "iStartProof: not a BI assertion"
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
               |apply tac_adequate]
  end.

(* Same as above, with 2 differences :
   - We can specify a BI in which we want the proof to be done
   - If the goal starts with a let or a ∀, they are automatically
     introduced. *)
Tactic Notation "iStartProof" uconstr(PROP) :=
  lazymatch goal with
  | |- @envs_entails ?PROP' _ _ =>
    (* This cannot be shared with the other [iStartProof], because
    type_term has a non-negligeable performance impact. *)
    let x := type_term (eq_refl : @eq Type PROP PROP') in idtac

  (* We eta-expand [as_emp_valid_2], in order to make sure that
     [iStartProof PROP] works even if [PROP] is the carrier type. In
     this case, typing this expression will end up unifying PROP with
     [bi_car _], and hence trigger the canonical structures mechanism
     to find the corresponding bi. *)
  | |- ?φ => notypeclasses refine ((λ P : PROP, @as_emp_valid_2 φ _ P) _ _ _);
89
               [iSolveTC || fail "iStartProof: not a BI assertion"
90
91
92
93
94
95
96
97
98
99
100
101
               |apply tac_adequate]
  end.

(** * Generate a fresh identifier *)
(* Tactic Notation tactics cannot return terms *)
Ltac iFresh :=
  (* We need to increment the environment counter using [tac_fresh].
     But because [iFresh] returns a value, we have to let bind
     [tac_fresh] wrapped under a match to force evaluation of this
     side-effect. See https://stackoverflow.com/a/46178884 *)
  let do_incr :=
      lazymatch goal with
102
      | _ => iStartProof; eapply tac_fresh; first by (pm_reflexivity)
103
104
105
      end in
  lazymatch goal with
  |- envs_entails ?Δ _ =>
106
    let n := pm_eval (env_counter Δ) in
107
108
109
110
111
112
113
114
115
116
117
118
119
    constr:(IAnon n)
  end.

(** * Simplification *)
Tactic Notation "iEval" tactic(t) :=
  iStartProof;
  eapply tac_eval;
    [let x := fresh in intros x; t; unfold x; reflexivity
    |].

Tactic Notation "iEval" tactic(t) "in" constr(H) :=
  iStartProof;
  eapply tac_eval_in with _ H _ _ _;
120
    [pm_reflexivity || fail "iEval:" H "not found"
121
    |let x := fresh in intros x; t; unfold x; reflexivity
122
    |pm_reflexivity
123
124
    |].

Robbert Krebbers's avatar
Robbert Krebbers committed
125
126
Tactic Notation "iSimpl" := iEval (simpl).
Tactic Notation "iSimpl" "in" constr(H) := iEval (simpl) in H.
127
128
129
130
131
132

(* It would be nice to also have an `iSsrRewrite`, however, for this we need to
pass arguments to Ssreflect's `rewrite` like `/= foo /bar` in Ltac, see:

  https://sympa.inria.fr/sympa/arc/coq-club/2018-01/msg00000.html

Robbert Krebbers's avatar
Robbert Krebbers committed
133
134
PMP told me (= Robbert) in person that this is not possible with the current
Ltac, but it may be possible in Ltac2. *)
135
136
137
138

(** * Context manipulation *)
Tactic Notation "iRename" constr(H1) "into" constr(H2) :=
  eapply tac_rename with _ H1 H2 _ _; (* (i:=H1) (j:=H2) *)
139
140
141
142
143
144
    [pm_reflexivity ||
     let H1 := pretty_ident H1 in
     fail "iRename:" H1 "not found"
    |pm_reflexivity ||
     let H2 := pretty_ident H2 in
     fail "iRename:" H2 "not fresh"|].
145
146
147
148
149

Local Inductive esel_pat :=
  | ESelPure
  | ESelIdent : bool  ident  esel_pat.

Ralf Jung's avatar
Ralf Jung committed
150
Local Ltac iElaborateSelPat_go pat Δ Hs :=
151
152
153
  lazymatch pat with
  | [] => eval cbv in Hs
  | SelPure :: ?pat =>  iElaborateSelPat_go pat Δ (ESelPure :: Hs)
154
  | SelIntuitionistic :: ?pat =>
155
    let Hs' := pm_eval (env_dom (env_intuitionistic Δ)) in
156
    let Δ' := pm_eval (envs_clear_intuitionistic Δ) in
157
158
    iElaborateSelPat_go pat Δ' ((ESelIdent true <$> Hs') ++ Hs)
  | SelSpatial :: ?pat =>
159
160
    let Hs' := pm_eval (env_dom (env_spatial Δ)) in
    let Δ' := pm_eval (envs_clear_spatial Δ) in
161
162
    iElaborateSelPat_go pat Δ' ((ESelIdent false <$> Hs') ++ Hs)
  | SelIdent ?H :: ?pat =>
163
    lazymatch pm_eval (envs_lookup_delete false H Δ) with
164
    | Some (?p,_,?Δ') =>  iElaborateSelPat_go pat Δ' (ESelIdent p H :: Hs)
165
166
167
    | None =>
      let H := pretty_ident H in
      fail "iElaborateSelPat:" H "not found"
168
169
    end
  end.
170
171
172
Ltac iElaborateSelPat pat :=
  lazymatch goal with
  | |- envs_entails ?Δ _ =>
173
    let pat := sel_pat.parse pat in iElaborateSelPat_go pat Δ (@nil esel_pat)
174
175
176
177
  end.

Local Ltac iClearHyp H :=
  eapply tac_clear with _ H _ _; (* (i:=H) *)
178
179
180
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iClear:" H "not found"
181
    |pm_reduce; iSolveTC ||
182
     let H := pretty_ident H in
183
184
185
186
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iClear:" H ":" P "not affine and the goal not absorbing"
    |].

187
188
189
190
191
192
Local Ltac iClear_go Hs :=
  lazymatch Hs with
  | [] => idtac
  | ESelPure :: ?Hs => clear; iClear_go Hs
  | ESelIdent _ ?H :: ?Hs => iClearHyp H; iClear_go Hs
  end.
193
Tactic Notation "iClear" constr(Hs) :=
194
  iStartProof; let Hs := iElaborateSelPat Hs in iClear_go Hs.
195
196
197
198
199
200
201

Tactic Notation "iClear" "(" ident_list(xs) ")" constr(Hs) :=
  iClear Hs; clear xs.

(** * Assumptions *)
Tactic Notation "iExact" constr(H) :=
  eapply tac_assumption with _ H _ _; (* (i:=H) *)
202
    [pm_reflexivity ||
203
     let H := pretty_ident H in
204
     fail "iExact:" H "not found"
205
    |iSolveTC ||
206
     let H := pretty_ident H in
207
208
     let P := match goal with |- FromAssumption _ ?P _ => P end in
     fail "iExact:" H ":" P "does not match goal"
209
    |pm_reduce; iSolveTC ||
210
     let H := pretty_ident H in
211
212
213
214
215
216
217
218
219
     fail "iExact:" H "not absorbing and the remaining hypotheses not affine"].

Tactic Notation "iAssumptionCore" :=
  let rec find Γ i P :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?Q => first [unify P Q; unify i j|find Γ i P]
    end in
  match goal with
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
220
     first [is_evar i; fail 1 | pm_reflexivity]
221
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
222
     is_evar i; first [find Γp i P | find Γs i P]; pm_reflexivity
223
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
224
     first [is_evar i; fail 1 | pm_reflexivity]
225
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
226
     is_evar i; first [find Γp i P | find Γs i P]; pm_reflexivity
227
228
229
230
231
232
233
234
235
  end.

Tactic Notation "iAssumption" :=
  let Hass := fresh in
  let rec find p Γ Q :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?P => first
       [pose proof (_ : FromAssumption p P Q) as Hass;
        eapply (tac_assumption _ _ j p P);
236
          [pm_reflexivity
237
          |apply Hass
238
          |pm_reduce; iSolveTC ||
239
240
241
           fail 1 "iAssumption:" j "not absorbing and the remaining hypotheses not affine"]
       |assert (P = False%I) as Hass by reflexivity;
        apply (tac_false_destruct _ j p P);
242
          [pm_reflexivity
243
244
245
246
247
248
249
250
251
252
253
254
          |exact Hass]
       |find p Γ Q]
    end in
  lazymatch goal with
  | |- envs_entails (Envs ?Γp ?Γs _) ?Q =>
     first [find true Γp Q | find false Γs Q
           |fail "iAssumption:" Q "not found"]
  end.

(** * False *)
Tactic Notation "iExFalso" := apply tac_ex_falso.

255
256
257
(** * Making hypotheses intuitionistic or pure *)
Local Tactic Notation "iIntuitionistic" constr(H) :=
  eapply tac_intuitionistic with _ H _ _ _; (* (i:=H) *)
258
259
    [pm_reflexivity ||
     let H := pretty_ident H in
260
     fail "iIntuitionistic:" H "not found"
261
    |iSolveTC ||
262
     let P := match goal with |- IntoPersistent _ ?P _ => P end in
263
     fail "iIntuitionistic:" P "not persistent"
264
    |pm_reduce; iSolveTC ||
265
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
266
     fail "iIntuitionistic:" P "not affine and the goal not absorbing"
267
    |pm_reflexivity|].
268
269
270

Local Tactic Notation "iPure" constr(H) "as" simple_intropattern(pat) :=
  eapply tac_pure with _ H _ _ _; (* (i:=H1) *)
271
272
273
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iPure:" H "not found"
274
    |iSolveTC ||
275
276
     let P := match goal with |- IntoPure ?P _ => P end in
     fail "iPure:" P "not pure"
277
    |pm_reduce; iSolveTC ||
278
279
280
281
282
283
284
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iPure:" P "not affine and the goal not absorbing"
    |intros pat].

Tactic Notation "iEmpIntro" :=
  iStartProof;
  eapply tac_emp_intro;
285
    [pm_reduce; iSolveTC ||
286
287
288
289
290
     fail "iEmpIntro: spatial context contains non-affine hypotheses"].

Tactic Notation "iPureIntro" :=
  iStartProof;
  eapply tac_pure_intro;
291
    [pm_reflexivity
292
    |iSolveTC ||
293
294
295
296
297
298
     let P := match goal with |- FromPure _ ?P _ => P end in
     fail "iPureIntro:" P "not pure"
    |].

(** Framing *)
Local Ltac iFrameFinish :=
299
  pm_prettify;
300
301
302
303
304
305
306
307
308
  try match goal with
  | |- envs_entails _ True => by iPureIntro
  | |- envs_entails _ emp => iEmpIntro
  end.

Local Ltac iFramePure t :=
  iStartProof;
  let φ := type of t in
  eapply (tac_frame_pure _ _ _ _ t);
309
    [iSolveTC || fail "iFrame: cannot frame" φ
310
311
312
313
314
    |iFrameFinish].

Local Ltac iFrameHyp H :=
  iStartProof;
  eapply tac_frame with _ H _ _ _;
315
316
317
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iFrame:" H "not found"
318
    |iSolveTC ||
319
320
321
322
323
324
325
     let R := match goal with |- Frame _ ?R _ _ => R end in
     fail "iFrame: cannot frame" R
    |iFrameFinish].

Local Ltac iFrameAnyPure :=
  repeat match goal with H : _ |- _ => iFramePure H end.

326
Local Ltac iFrameAnyIntuitionistic :=
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => repeat iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_intuitionistic Δ)) in go Hs
  end.

Local Ltac iFrameAnySpatial :=
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => try iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_spatial Δ)) in go Hs
  end.

Tactic Notation "iFrame" := iFrameAnySpatial.

Tactic Notation "iFrame" "(" constr(t1) ")" :=
  iFramePure t1.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" :=
  iFramePure t1; iFrame ( t2 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" :=
  iFramePure t1; iFrame ( t2 t3 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ).

367
368
369
370
Local Ltac iFrame_go Hs :=
  lazymatch Hs with
  | [] => idtac
  | SelPure :: ?Hs => iFrameAnyPure; iFrame_go Hs
371
  | SelIntuitionistic :: ?Hs => iFrameAnyIntuitionistic; iFrame_go Hs
372
373
374
375
  | SelSpatial :: ?Hs => iFrameAnySpatial; iFrame_go Hs
  | SelIdent ?H :: ?Hs => iFrameHyp H; iFrame_go Hs
  end.

376
Tactic Notation "iFrame" constr(Hs) :=
377
  let Hs := sel_pat.parse Hs in iFrame_go Hs.
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
Tactic Notation "iFrame" "(" constr(t1) ")" constr(Hs) :=
  iFramePure t1; iFrame Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")"
    constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ) Hs.

(** * Basic introduction tactics *)
Local Tactic Notation "iIntro" "(" simple_intropattern(x) ")" :=
  (* In the case the goal starts with an [let x := _ in _], we do not
     want to unfold x and start the proof mode. Instead, we want to
     use intros. So [iStartProof] has to be called only if [intros]
     fails *)
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
  (* We use [_ || _] instead of [first [..|..]] so that the error in the second
  branch propagates upwards. *)
  (
    (* introduction at the meta level *)
    intros x
  ) || (
    (* introduction in the logic *)
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ _ =>
      eapply tac_forall_intro;
        [iSolveTC ||
         let P := match goal with |- FromForall ?P _ => P end in
         fail "iIntro: cannot turn" P "into a universal quantifier"
        |pm_prettify; intros x
         (* subgoal *)]
    end).
423
424
425
426

Local Tactic Notation "iIntro" constr(H) :=
  iStartProof;
  first
427
  [(* (?Q → _) *)
428
    eapply tac_impl_intro with _ H _ _ _; (* (i:=H) *)
429
      [iSolveTC
430
      |pm_reduce; iSolveTC ||
431
432
433
       let P := lazymatch goal with |- Persistent ?P => P end in
       fail 1 "iIntro: introducing non-persistent" H ":" P
              "into non-empty spatial context"
434
435
436
      |pm_reflexivity ||
       let H := pretty_ident H in
       fail 1 "iIntro:" H "not fresh"
437
      |iSolveTC
438
439
      |(* subgoal *)]
  |(* (_ -∗ _) *)
440
    eapply tac_wand_intro with _ H _ _; (* (i:=H) *)
441
      [iSolveTC
442
443
444
      | pm_reflexivity ||
        let H := pretty_ident H in
        fail 1 "iIntro:" H "not fresh"
445
446
      |(* subgoal *)]
  | fail 1 "iIntro: nothing to introduce" ].
447
448
449
450

Local Tactic Notation "iIntro" "#" constr(H) :=
  iStartProof;
  first
451
  [(* (?P → _) *)
452
   eapply tac_impl_intro_intuitionistic with _ H _ _ _; (* (i:=H) *)
453
454
455
456
457
458
459
460
461
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- IntoPersistent _ ?P _ => P end in
      fail 1 "iIntro:" P "not persistent"
     |pm_reflexivity ||
      let H := pretty_ident H in
      fail 1 "iIntro:" H "not fresh"
     |(* subgoal *)]
  |(* (?P -∗ _) *)
462
   eapply tac_wand_intro_intuitionistic with _ H _ _ _; (* (i:=H) *)
463
464
465
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- IntoPersistent _ ?P _ => P end in
466
      fail 1 "iIntro:" P "not intuitionistic"
467
468
469
470
471
472
473
474
     |iSolveTC ||
      let P := match goal with |- TCOr (Affine ?P) _ => P end in
      fail 1 "iIntro:" P "not affine and the goal not absorbing"
     |pm_reflexivity ||
      let H := pretty_ident H in
      fail 1 "iIntro:" H "not fresh"
     |(* subgoal *)]
  |fail 1 "iIntro: nothing to introduce"].
475

476
477
478
479
480
481
Local Tactic Notation "iIntro" constr(H) "as" constr(p) :=
  lazymatch p with
  | true => iIntro #H
  | _ =>  iIntro H
  end.

482
Local Tactic Notation "iIntro" "_" :=
483
  iStartProof;
484
  first
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
  [(* (?Q → _) *)
   eapply tac_impl_intro_drop;
     [iSolveTC
     |(* subgoal *)]
  |(* (_ -∗ _) *)
   eapply tac_wand_intro_drop;
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- TCOr (Affine ?P) _ => P end in
      fail 1 "iIntro:" P "not affine and the goal not absorbing"
     |(* subgoal *)]
  |(* (∀ _, _) *)
   iIntro (_)
   (* subgoal *)
  |fail 1 "iIntro: nothing to introduce"].
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

Local Tactic Notation "iIntroForall" :=
  lazymatch goal with
  | |-  _, ?P => fail (* actually an →, this is handled by iIntro below *)
  | |-  _, _ => intro
  | |- let _ := _ in _ => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ ( x : _, _) => let x' := fresh x in iIntro (x')
    end
  end.
Local Tactic Notation "iIntro" :=
  lazymatch goal with
  | |- _  ?P => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ (_ - _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    | |- envs_entails _ (_  _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    end
  end.

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
(** * Revert *)
Local Tactic Notation "iForallRevert" ident(x) :=
  let err x :=
    intros x;
    iMatchHyp (fun H P =>
      lazymatch P with
      | context [x] => fail 2 "iRevert:" x "is used in hypothesis" H
      end) in
  iStartProof;
  let A := type of x in
  lazymatch type of A with
  | Prop => revert x; first [apply tac_pure_revert|err x]
  | _ => revert x; first [apply tac_forall_revert|err x]
  end.

538
539
540
541
542
543
544
545
(** The tactic [iRevertHyp H with tac] reverts the hypothesis [H] and calls
[tac] with a Boolean that is [true] iff [H] was in the intuitionistic context. *)
Tactic Notation "iRevertHyp" constr(H) "with" tactic1(tac) :=
  (* Create a Boolean evar [p] to keep track of whether the hypothesis [H] was
  in the intuitionistic context. *)
  let p := fresh in evar (p : bool);
  let p' := eval unfold p in p in clear p;
  eapply tac_revert with _ H p' _;
546
547
548
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iRevert:" H "not found"
549
550
551
    |pm_reduce; tac p'].

Tactic Notation "iRevertHyp" constr(H) := iRevertHyp H with (fun _ => idtac).
552

553
554
555
556
557
558
559
Tactic Notation "iRevert" constr(Hs) :=
  let rec go Hs :=
    lazymatch Hs with
    | [] => idtac
    | ESelPure :: ?Hs =>
       repeat match goal with x : _ |- _ => revert x end;
       go Hs
560
    | ESelIdent _ ?H :: ?Hs => iRevertHyp H; go Hs
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    end in
  iStartProof; let Hs := iElaborateSelPat Hs in go Hs.

Tactic Notation "iRevert" "(" ident(x1) ")" :=
  iForallRevert x1.
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" :=
  iForallRevert x2; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" :=
  iForallRevert x3; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")" :=
  iForallRevert x4; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" :=
  iForallRevert x5; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" :=
  iForallRevert x6; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" :=
  iForallRevert x7; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" :=
  iForallRevert x8; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).

Tactic Notation "iRevert" "(" ident(x1) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")"
    constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 ).

607
(** * The specialize and pose proof tactics *)
608
609
610
611
612
613
614
615
616
617
Record iTrm {X As S} :=
  ITrm { itrm : X ; itrm_vars : hlist As ; itrm_hyps : S }.
Arguments ITrm {_ _ _} _ _ _.

Notation "( H $! x1 .. xn )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) "") (at level 0, x1, xn at level 9).
Notation "( H $! x1 .. xn 'with' pat )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) pat) (at level 0, x1, xn at level 9).
Notation "( H 'with' pat )" := (ITrm H hnil pat) (at level 0).

618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
(* The tactic [iIntoEmpValid] tactic solves a goal [bi_emp_valid Q]. The
argument [t] must be a Coq term whose type is of the following shape:

[∀ (x_1 : A_1) .. (x_n : A_n), φ]

and so that we have an instance `AsValid φ Q`.

Examples of such [φ]s are

- [bi_emp_valid P], in which case [Q] should be [P]
- [P1 ⊢ P2], in which case [Q] should be [P1 -∗ P2]
- [P1 ⊣⊢ P2], in which case [Q] should be [P1 ↔ P2]

The tactic instantiates each dependent argument [x_i] with an evar and generates
a goal [R] for each non-dependent argument [x_i : R].  For example, if the
original goal was [Q] and [t] has type [∀ x, P x → Q], then it generates an evar
[?x] for [x] and a subgoal [P ?x]. *)
Local Ltac iIntoEmpValid t :=
  let go_specialize t tT :=
    lazymatch tT with                (* We do not use hnf of tT, because, if
                                        entailment is not opaque, then it would
                                        unfold it. *)
    | ?P  ?Q => let H := fresh in assert P as H; [|iIntoEmpValid uconstr:(t H); clear H]
    |  _ : ?T, _ =>
      (* Put [T] inside an [id] to avoid TC inference from being invoked. *)
      (* This is a workarround for Coq bug #6583. *)
      let e := fresh in evar (e:id T);
      let e' := eval unfold e in e in clear e; iIntoEmpValid (t e')
    end
  in
    (* We try two reduction tactics for the type of t before trying to
       specialize it. We first try the head normal form in order to
       unfold all the definition that could hide an entailment.  Then,
       we try the much weaker [eval cbv zeta], because entailment is
       not necessarilly opaque, and could be unfolded by [hnf].

       However, for calling type class search, we only use [cbv zeta]
       in order to make sure we do not unfold [bi_emp_valid]. *)
    let tT := type of t in
    first
      [ let tT' := eval hnf in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in
        notypeclasses refine (as_emp_valid_1 tT _ _);
          [iSolveTC || fail 1 "iPoseProof: not a BI assertion"
          |exact t]].

Tactic Notation "iPoseProofCoreHyp" constr(H) "as" constr(Hnew) :=
  eapply tac_pose_proof_hyp with _ _ H _ Hnew _;
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iPoseProof:" H "not found"
    |pm_reflexivity ||
     let Htmp := pretty_ident Hnew in
     fail "iPoseProof:" Hnew "not fresh"
    |].

Tactic Notation "iPoseProofCoreLem"
    constr(lem) "as" constr(Hnew) "before_tc" tactic(tac) :=
  eapply tac_pose_proof with _ Hnew _; (* (j:=H) *)
    [iIntoEmpValid lem
    |pm_reflexivity ||
     let Htmp := pretty_ident Hnew in
     fail "iPoseProof:" Hnew "not fresh"
    |tac];
  (* Solve all remaining TC premises generated by [iIntoEmpValid] *)
  try iSolveTC.

686
687
688
689
690
(** There is some hacky stuff going on here: because of Coq bug #6583, unresolved
type classes in the arguments `xs` are resolved at arbitrary moments. Tactics
like `apply`, `split` and `eexists` wrongly trigger type class search to resolve
these holes. To avoid TC being triggered too eagerly, this tactic uses `refine`
at most places instead of `apply`. *)
691
Local Ltac iSpecializeArgs_go H xs :=
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
  lazymatch xs with
  | hnil => idtac
  | hcons ?x ?xs =>
     notypeclasses refine (tac_forall_specialize _ _ H _ _ _ _ _ _ _);
       [pm_reflexivity ||
        let H := pretty_ident H in
        fail "iSpecialize:" H "not found"
       |iSolveTC ||
        let P := match goal with |- IntoForall ?P _ => P end in
        fail "iSpecialize: cannot instantiate" P "with" x
       |lazymatch goal with (* Force [A] in [ex_intro] to deal with coercions. *)
        | |-  _ : ?A, _ =>
          notypeclasses refine (@ex_intro A _ x (conj _ _))
        end; [shelve..|pm_reflexivity|iSpecializeArgs_go H xs]]
  end.
707
708
Local Tactic Notation "iSpecializeArgs" constr(H) open_constr(xs) :=
  iSpecializeArgs_go H xs.
709

710
Ltac iSpecializePat_go H1 pats :=
711
712
713
714
715
716
717
718
719
720
721
722
  let solve_to_wand H1 :=
    iSolveTC ||
    let P := match goal with |- IntoWand _ _ ?P _ _ => P end in
    fail "iSpecialize:" P "not an implication/wand" in
  let solve_done d :=
    lazymatch d with
    | true =>
       done ||
       let Q := match goal with |- envs_entails _ ?Q => Q end in
       fail "iSpecialize: cannot solve" Q "using done"
    | false => idtac
    end in
723
  lazymatch pats with
724
725
726
    | [] => idtac
    | SForall :: ?pats =>
       idtac "[IPM] The * specialization pattern is deprecated because it is applied implicitly.";
727
       iSpecializePat_go H1 pats
728
729
730
731
    | SIdent ?H2 [] :: ?pats =>
       (* If we not need to specialize [H2] we can avoid a lot of unncessary
       context manipulation. *)
       notypeclasses refine (tac_specialize false _ _ _ H2 _ H1 _ _ _ _ _ _ _ _ _ _);
732
733
734
735
736
737
         [pm_reflexivity ||
          let H2 := pretty_ident H2 in
          fail "iSpecialize:" H2 "not found"
         |pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
738
739
740
741
         |iSolveTC ||
          let P := match goal with |- IntoWand _ _ ?P ?Q _ => P end in
          let Q := match goal with |- IntoWand _ _ ?P ?Q _ => Q end in
          fail "iSpecialize: cannot instantiate" P "with" Q
742
         |pm_reflexivity|iSpecializePat_go H1 pats]
743
744
745
746
747
748
749
750
751
752
    | SIdent ?H2 ?pats1 :: ?pats =>
       (* If [H2] is in the intuitionistic context, we copy it into a new
       hypothesis [Htmp], so that it can be used multiple times. *)
       let H2tmp := iFresh in
       iPoseProofCoreHyp H2 as H2tmp;
       (* Revert [H1] and re-introduce it later so that it will not be consumsed
       by [pats1]. *)
       iRevertHyp H1 with (fun p =>
         iSpecializePat_go H2tmp pats1;
           [.. (* side-conditions of [iSpecialize] *)
753
           |iIntro H1 as p]);
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
         (* We put the stuff below outside of the closure to get less verbose
         Ltac backtraces (which would otherwise include the whole closure). *)
         [.. (* side-conditions of [iSpecialize] *)
         |(* Use [remove_intuitionistic = true] to remove the copy [Htmp]. *)
          notypeclasses refine (tac_specialize true _ _ _ H2tmp _ H1 _ _ _ _ _ _ _ _ _ _);
            [pm_reflexivity ||
             let H2tmp := pretty_ident H2tmp in
             fail "iSpecialize:" H2tmp "not found"
            |pm_reflexivity ||
             let H1 := pretty_ident H1 in
             fail "iSpecialize:" H1 "not found"
            |iSolveTC ||
             let P := match goal with |- IntoWand _ _ ?P ?Q _ => P end in
             let Q := match goal with |- IntoWand _ _ ?P ?Q _ => Q end in
             fail "iSpecialize: cannot instantiate" P "with" Q
            |pm_reflexivity|iSpecializePat_go H1 pats]]
770
771
    | SPureGoal ?d :: ?pats =>
       notypeclasses refine (tac_specialize_assert_pure _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
772
773
774
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
775
776
777
778
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- FromPure _ ?Q _ => Q end in
          fail "iSpecialize:" Q "not pure"
779
         |pm_reflexivity
780
         |solve_done d (*goal*)
781
         |iSpecializePat_go H1 pats]
782
783
    | SGoal (SpecGoal GIntuitionistic false ?Hs_frame [] ?d) :: ?pats =>
       notypeclasses refine (tac_specialize_assert_intuitionistic _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
784
785
786
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
787
788
789
790
791
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
         |iSolveTC
792
         |pm_reflexivity
793
         |iFrame Hs_frame; solve_done d (*goal*)
794
         |iSpecializePat_go H1 pats]
795
796
    | SGoal (SpecGoal GIntuitionistic _ _ _ _) :: ?pats =>
       fail "iSpecialize: cannot select hypotheses for intuitionistic premise"
797
798
799
    | SGoal (SpecGoal ?m ?lr ?Hs_frame ?Hs ?d) :: ?pats =>
       let Hs' := eval cbv in (if lr then Hs else Hs_frame ++ Hs) in
       notypeclasses refine (tac_specialize_assert _ _ _ _ H1 _ lr Hs' _ _ _ _ _ _ _ _ _ _ _);
800
801
802
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
803
804
         |solve_to_wand H1
         |lazymatch m with
805
          | GSpatial => class_apply add_modal_id
806
807
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
808
         |pm_reflexivity ||
809
810
811
          let Hs' := iMissingHyps Hs' in
          fail "iSpecialize: hypotheses" Hs' "not found"
         |iFrame Hs_frame; solve_done d (*goal*)
812
         |iSpecializePat_go H1 pats]
813
814
    | SAutoFrame GIntuitionistic :: ?pats =>
       notypeclasses refine (tac_specialize_assert_intuitionistic _ _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _ _);
815
816
817
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
818
819
820
821
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
822
         |pm_reflexivity
823
         |solve [iFrame "∗ #"]
824
         |iSpecializePat_go H1 pats]
825
826
    | SAutoFrame ?m :: ?pats =>
       notypeclasses refine (tac_specialize_frame _ _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
827
828
829
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
830
831
         |solve_to_wand H1
         |lazymatch m with
Robbert Krebbers's avatar
Robbert Krebbers committed
832
          | GSpatial => class_apply add_modal_id
833
834
835
836
837
838
839
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
         |first
            [notypeclasses refine (tac_unlock_emp _ _ _)
            |notypeclasses refine (tac_unlock_True _ _ _)
            |iFrame "∗ #"; notypeclasses refine (tac_unlock _ _ _)
            |fail "iSpecialize: premise cannot be solved by framing"]
840
841
842
843
844
         |exact eq_refl]; iIntro H1; iSpecializePat_go H1 pats
    end.

Local Tactic Notation "iSpecializePat" open_constr(H) constr(pat) :=
  let pats := spec_pat.parse pat in iSpecializePat_go H pats.
845
846

(* The argument [p] denotes whether the conclusion of the specialized term is
847
intuitionistic. If so, one can use all spatial hypotheses for both proving the
848
849
850
851
852
853
854
855
856
premises and the remaning goal. The argument [p] can either be a Boolean or an
introduction pattern, which will be coerced into [true] when it solely contains
`#` or `%` patterns at the top-level.

In case the specialization pattern in [t] states that the modality of the goal
should be kept for one of the premises (i.e. [>[H1 .. Hn]] is used) then [p]
defaults to [false] (i.e. spatial hypotheses are not preserved). *)
Tactic Notation "iSpecializeCore" open_constr(H)
    "with" open_constr(xs) open_constr(pat) "as" constr(p) :=
857
  let p := intro_pat_intuitionistic p in
858
859
860
861
862
863
864
  let pat := spec_pat.parse pat in
  let H :=
    lazymatch type of H with
    | string => constr:(INamed H)
    | _ => H
    end in
  iSpecializeArgs H xs; [..|
Robbert Krebbers's avatar
Robbert Krebbers committed
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
    lazymatch type of H with
    | ident =>
       (* The lemma [tac_specialize_intuitionistic_helper] allows one to use the
       whole spatial context for:
       - proving the premises of the lemma we specialize, and,
       - the remaining goal.

       We can only use if all of the following properties hold:
       - The result of the specialization is persistent.
       - No modality is eliminated.
       - If the BI is not affine, the hypothesis should be in the intuitionistic
         context.

       As an optimization, we do only use [tac_specialize_intuitionistic_helper]
       if no implications nor wands are eliminated, i.e. [pat ≠ []]. *)
       let pat := spec_pat.parse pat in
       lazymatch eval compute in
         (p && bool_decide (pat  []) && negb (existsb spec_pat_modal pat)) with
       | true =>
          (* Check that if the BI is not affine, the hypothesis is in the
          intuitionistic context. *)
          lazymatch iTypeOf H with
          | Some (?q, _) =>
             let PROP := iBiOfGoal in
             lazymatch eval compute in (q || tc_to_bool (BiAffine PROP)) with
             | true =>
                notypeclasses refine (tac_specialize_intuitionistic_helper _ _ H _ _ _ _ _ _ _ _ _ _ _);
                  [pm_reflexivity
                   (* This premise, [envs_lookup j Δ = Some (q,P)],
                   holds because [iTypeOf] succeeded *)
                  |pm_reduce; iSolveTC
                   (* This premise, [if q then TCTrue else BiAffine PROP],
                   holds because [q || TC_to_bool (BiAffine PROP)] is true *)
                  |iSpecializePat H pat;
                    [..
                    |notypeclasses refine (tac_specialize_intuitionistic_helper_done _ H _ _ _);
                     pm_reflexivity]
                  |iSolveTC ||
                   let Q := match goal with |- IntoPersistent _ ?Q _ => Q end in
                   fail "iSpecialize:" Q "not persistent"
                  |pm_reflexivity
                  |(* goal *)]
             | false => iSpecializePat H pat
             end
          | None =>
             let H := pretty_ident H in
             fail "iSpecialize:" H "not found"
          end
       | false => iSpecializePat H pat
       end
    | _ => fail "iSpecialize:" H "should be a hypothesis, use iPoseProof instead"
    end].
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933

Tactic Notation "iSpecializeCore" open_constr(t) "as" constr(p) :=
  lazymatch type of t with
  | string => iSpecializeCore t with hnil "" as p
  | ident => iSpecializeCore t with hnil "" as p
  | _ =>
    lazymatch t with
    | ITrm ?H ?xs ?pat => iSpecializeCore H with xs pat as p
    | _ => fail "iSpecialize:" t "should be a proof mode term"
    end
  end.

Tactic Notation "iSpecialize" open_constr(t) :=
  iSpecializeCore t as false.
Tactic Notation "iSpecialize" open_constr(t) "as" "#" :=
  iSpecializeCore t as true.

934
935
936
937
938
939
940
941
942
943
(** The tactic [iPoseProofCore lem as p lazy_tc tac] inserts the resource
described by [lem] into the context. The tactic takes a continuation [tac] as
its argument, which is called with a temporary fresh name [H] that refers to
the hypothesis containing [lem].

There are a couple of additional arguments:

- The argument [p] is like that of [iSpecialize]. It is a Boolean that denotes
  whether the conclusion of the specialized term [lem] is persistent.
- The argument [lazy_tc] denotes whether type class inference on the premises
Robbert Krebbers's avatar
Robbert Krebbers committed
944
945
  of [lem] should be performed before (if [lazy_tc = false]) or after (if
  [lazy_tc = true]) [tac H] is called.
946
947
948
949
950
951
952
953
954
955

Both variants of [lazy_tc] are used in other tactics that build on top of
[iPoseProofCore]:

- The tactic [iApply] uses lazy type class inference (i.e. [lazy_tc = true]),
  so that evars can first be matched against the goal before being solved by
  type class inference.
- The tactic [iDestruct] uses eager type class inference (i.e. [lazy_tc = false])
  because it may be not possible to eliminate logical connectives before all
  type class constraints have been resolved. *)
956
957
958
959
960
961
962
963
Tactic Notation "iPoseProofCore" open_constr(lem)
    "as" constr(p) constr(lazy_tc) tactic(tac) :=
  iStartProof;
  let Htmp := iFresh in
  let t := lazymatch lem with ITrm ?t ?xs ?pat => t | _ => lem end in
  let t := lazymatch type of t with string => constr:(INamed t) | _ => t end in
  let spec_tac _ :=
    lazymatch lem with
Robbert Krebbers's avatar
Robbert Krebbers committed
964
    | ITrm _ ?xs ?pat => iSpecializeCore (ITrm Htmp xs pat) as p
965
966
    | _ => idtac
    end in
Robbert Krebbers's avatar
Robbert Krebbers committed
967
968
969
970
971
972
973
974
975
  lazymatch type of t with
  | ident => iPoseProofCoreHyp t as Htmp; spec_tac (); [..|tac Htmp]
  | _ =>
     lazymatch eval compute in lazy_tc with
     | true =>
        iPoseProofCoreLem t as Htmp before_tc (spec_tac (); [..|tac Htmp])
     | false =>
        iPoseProofCoreLem t as Htmp before_tc (spec_tac ()); [..|tac Htmp]
     end
976
977
  end.

978
(** * The apply tactic *)
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
(** [iApply lem] takes an argument [lem : P₁ -∗ .. -∗ Pₙ -∗ Q] (after the
specialization patterns in [lem] have been executed), where [Q] should match
the goal, and generates new goals [P1] ... [Pₙ]. Depending on the number of
premises [n], the tactic will have the following behavior:

- If [n = 0], it will immediately solve the goal (i.e. it will not generate any
  subgoals). When working in a general BI, this means that the tactic can fail
  in case there are non-affine spatial hypotheses in the context prior to using
  the [iApply] tactic. Note that if [n = 0], the tactic behaves exactly like
  [iExact lem].
- If [n > 0] it will generate a goals [P₁] ... [Pₙ]. All spatial hypotheses
  will be transferred to the last goal, i.e. [Pₙ]; the other goals will receive
  no spatial hypotheses. If you want to control more precisely how the spatial
  hypotheses are subdivided, you should add additional introduction patterns to
  [lem]. *)

(* The helper [iApplyHypExact] takes care of the [n=0] case. It fails with level
0 if we should proceed to the [n > 0] case, and with level 1 if there is an
actual error. *)
Local Ltac iApplyHypExact H :=
  first
    [eapply tac_assumption with _ H _ _; (* (i:=H) *)
       [pm_reflexivity || fail 1
       |iSolveTC || fail 1
       |pm_reduce; iSolveTC]
    |lazymatch iTypeOf H with
     | Some (_,?Q) =>
        fail 2 "iApply:" Q "not absorbing and the remaining hypotheses not affine"
     end].
Local Ltac iApplyHypLoop H :=
  first
1010
    [eapply tac_apply with _ H _ _ _;
1011
      [pm_reflexivity
1012
      |iSolveTC
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
      |pm_prettify (* reduce redexes created by instantiation *)]
    |iSpecializePat H "[]"; last iApplyHypLoop H].

Tactic Notation "iApplyHyp" constr(H) :=
  first
    [iApplyHypExact H
    |iApplyHypLoop H
    |lazymatch iTypeOf H with
     | Some (_,?Q) => fail 1 "iApply: cannot apply" Q
     end].
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Tactic Notation "iApply" open_constr(lem) :=
  iPoseProofCore lem as false true (fun H => iApplyHyp H).

(** * Disjunction *)
Tactic Notation "iLeft" :=
  iStartProof;
  eapply tac_or_l;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iLeft:" P "not a disjunction"
1034
    |(* subgoal *)].
1035
1036
1037
1038
1039
1040
Tactic Notation "iRight" :=
  iStartProof;
  eapply tac_or_r;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iRight:" P "not a disjunction"
1041
    |(* subgoal *)].
1042
1043
1044

Local Tactic Notation "iOrDestruct" constr(H) "as" constr(H1) constr(H2) :=
  eapply tac_or_destruct with _ _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
1045
1046
1047
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iOrDestruct:" H "not found"
1048
1049
1050
    |iSolveTC ||
     let P := match goal with |- IntoOr ?P _ _ => P end in
     fail "iOrDestruct: cannot destruct" P
1051
1052
1053
1054
1055
1056
    |pm_reflexivity ||
     let H1 := pretty_ident H1 in
     fail "iOrDestruct:" H1 "not fresh"
    |pm_reflexivity ||
     let H2 := pretty_ident H2 in
     fail "iOrDestruct:" H2 "not fresh"
1057
1058
    |(* subgoal 1 *)
    |(* subgoal 2 *)].
1059
1060
1061
1062
1063
1064
1065

(** * Conjunction and separating conjunction *)
Tactic Notation "iSplit" :=
  iStartProof;
  eapply tac_and_split;
    [iSolveTC ||
     let P := match goal with |- FromAnd ?P _ _ => P end in
1066
1067
1068
     fail "iSplit:" P "not a conjunction"
    |(* subgoal 1 *)
    |(* subgoal 2 *)].
1069
1070
1071
1072
1073
1074
1075
1076
1077

Tactic Notation "iSplitL" constr(Hs) :=
  iStartProof;
  let Hs := words Hs in
  let Hs := eval vm_compute in (INamed <$> Hs) in
  eapply tac_sep_split with _ _ Left Hs _ _; (* (js:=Hs) *)
    [iSolveTC ||
     let P := match goal with |- FromSep _ ?P _ _ => P end in
     fail "iSplitL:" P "not a separating conjunction"
1078
    |pm_reflexivity ||
1079
1080
     let Hs := iMissingHyps Hs in
     fail "iSplitL: hypotheses" Hs "not found"
1081
1082
    |(* subgoal 1 *)
    |(* subgoal 2 *)].
1083
1084
1085
1086
1087
1088
1089
1090
1091

Tactic Notation "iSplitR" constr(Hs) :=
  iStartProof;
  let Hs := words Hs in
  let Hs := eval vm_compute in (INamed <$> Hs) in
  eapply tac_sep_split with _ _ Right Hs _ _; (* (js:=Hs) *)
    [iSolveTC ||
     let P := match goal with |- FromSep _ ?P _ _ => P end in
     fail "iSplitR:" P "not a separating conjunction"
1092
    |pm_reflexivity ||
1093
1094
     let Hs := iMissingHyps Hs in
     fail "iSplitR: hypotheses" Hs "not found"
1095
1096
    |(* subgoal 1 *)
    |(* subgoal 2 *)].
1097
1098
1099
1100
1101
1102

Tactic Notation "iSplitL" := iSplitR "".
Tactic Notation "iSplitR" := iSplitL "".

Local Tactic Notation "iAndDestruct" constr(H) "as" constr(H1) constr(H2) :=
  eapply tac_and_destruct with _ H _ H1 H2 _ _ _; (* (i:=H) (j1:=H1) (j2:=H2) *)
1103
1104
1105
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iAndDestruct:" H "not found"
1106
    |pm_reduce; iSolveTC ||
1107
1108
1109
1110
1111
1112
     let P :=
       lazymatch goal with
       | |- IntoSep ?P _ _ => P
       | |- IntoAnd _ ?P _ _ => P
       end in
     fail "iAndDestruct: cannot destruct" P
1113
1114
1115
    |pm_reflexivity ||
     let H1 := pretty_ident H1 in
     let H2 := pretty_ident H2 in
1116
     fail "iAndDestruct:" H1 "or" H2 "not fresh"
1117
    |(* subgoal *)].
1118
1119
1120

Local Tactic Notation "iAndDestructChoice" constr(H) "as" constr(d) constr(H') :=
  eapply tac_and_destruct_choice with _ H _ d H' _ _ _;
1121
1122
    [pm_reflexivity || fail "iAndDestructChoice:" H "not found"
    |pm_reduce; iSolveTC ||
1123
1124
     let P := match goal with |- TCOr (IntoAnd _ ?P _ _) _ => P end in
     fail "iAndDestructChoice: cannot destruct" P
1125
1126
    |pm_reflexivity ||
     let H' := pretty_ident H' in
1127
     fail "iAndDestructChoice:" H' "not fresh"
1128
    |(* subgoal *)].
1129
1130
1131
1132
1133
1134
1135
1136

(** * Existential *)
Tactic Notation "iExists" uconstr(x1) :=
  iStartProof;
  eapply tac_exist;
    [iSolveTC ||
     let P := match goal with |- FromExist ?P _ => P end in
     fail "iExists:" P "not an existential"
1137
1138
    |pm_prettify; eexists x1
     (* subgoal *) ].
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163

Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) :=
  iExists x1; iExists x2.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) :=
  iExists x1; iExists x2, x3.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) :=
  iExists x1; iExists x2, x3, x4.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) :=
  iExists x1; iExists x2, x3, x4, x5.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) :=
  iExists x1; iExists x2, x3, x4, x5, x6.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) "," uconstr(x7) :=
  iExists x1; iExists x2, x3, x4, x5, x6, x7.
Tactic Notation "iExists" uconstr(x1) "," uconstr(x2) "," uconstr(x3) ","
    uconstr(x4) "," uconstr(x5) "," uconstr(x6) "," uconstr(x7) ","
    uconstr(x8) :=
  iExists x1; iExists x2, x3, x4, x5, x6, x7, x8.

Local Tactic Notation "iExistDestruct" constr(H)
    "as" simple_intropattern(x) constr(Hx) :=
  eapply tac_exist_destruct with H _ Hx _ _; (* (i:=H) (j:=Hx) *)
1164
1165
1166
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iExistDestruct:" H "not found"
1167
1168
1169
1170
1171
    |iSolveTC ||
     let P := match goal with |- IntoExist ?P _ => P end in
     fail "iExistDestruct: cannot destruct" P|];
  let y := fresh in
  intros y; eexists; split;
1172
1173
1174
    [pm_reflexivity ||
     let Hx := pretty_ident Hx in
     fail "iExistDestruct:" Hx "not fresh"
1175
1176
    |revert y; intros x
     (* subgoal *)].
1177
1178
1179
1180
1181
1182
1183
1184

(** * Modality introduction *)
Tactic Notation "iModIntro" uconstr(sel) :=
  iStartProof;
  notypeclasses refine (tac_modal_intro _ sel _ _ _ _ _ _ _ _ _ _ _ _ _);
    [iSolveTC ||
     fail "iModIntro: the goal is not a modality"
    |iSolveTC ||
1185
     let s := lazymatch goal with |- IntoModalIntuitionisticEnv _ _ _ ?s => s end in
1186
     lazymatch eval hnf in s with
1187
1188
     | MIEnvForall ?C => fail "iModIntro: intuitionistic context does not satisfy" C
     | MIEnvIsEmpty => fail "iModIntro: intuitionistic context is non-empty"
1189
1190
     end
    |iSolveTC ||
Robbert Krebbers's avatar
Robbert Krebbers committed
1191
     let s := lazymatch goal with |- IntoModalSpatialEnv _ _ _ ?s _ => s end in
1192
1193
1194
1195
     lazymatch eval hnf in s with
     | MIEnvForall ?C => fail "iModIntro: spatial context does not satisfy" C
     | MIEnvIsEmpty => fail "iModIntro: spatial context is non-empty"
     end
1196
    |pm_reduce; iSolveTC ||
1197
     fail "iModIntro: cannot filter spatial context when goal is not absorbing"
Ralf Jung's avatar