agree.v 17.2 KB
Newer Older
1
From iris.algebra Require Export cmra.
Ralf Jung's avatar
Ralf Jung committed
2
From iris.algebra Require Import list.
3
From iris.base_logic Require Import base_logic.
Ralf Jung's avatar
Ralf Jung committed
4 5 6 7
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Local Arguments op _ _ _ !_ /.
Local Arguments pcore _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
Record agree (A : Type) : Type := Agree {
Ralf Jung's avatar
Ralf Jung committed
10 11
  agree_car : A;
  agree_with : list A;
Robbert Krebbers's avatar
Robbert Krebbers committed
12
}.
Ralf Jung's avatar
Ralf Jung committed
13 14 15 16 17 18 19 20 21 22
Arguments Agree {_} _ _.
Arguments agree_car {_} _.
Arguments agree_with {_} _.

(* Some theory about set-inclusion on lists and lists of which all elements are equal.
   TODO: Move this elsewhere. *)
Definition list_setincl `(R : relation A) (al bl : list A) :=
   a, a  al   b, b  bl  R a b.
Definition list_setequiv `(R : relation A) (al bl : list A) :=
  list_setincl R al bl  list_setincl R bl al.
23 24 25
(* list_agrees is carefully written such that, when applied to a
   singleton, it is convertible to True. This makes working with
   agreement much more pleasant. *)
Ralf Jung's avatar
Ralf Jung committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Definition list_agrees `(R : relation A) (al : list A) :=
  match al with
  | [] => True
  | [a] => True
  | a :: al =>  b, b  al  R a b
  end.

Lemma list_agrees_alt `(R : relation A) `{Equivalence _ R} al :
  list_agrees R al  ( a b, a  al  b  al  R a b).
Proof.
  destruct al as [|a [|b al]].
  - split; last done. intros _ ? ? []%elem_of_nil.
  - split; last done. intros _ ? ? ->%elem_of_list_singleton ->%elem_of_list_singleton. done.
  - simpl. split.
    + intros Hl a' b' [->|Ha']%elem_of_cons.
      * intros [->|Hb']%elem_of_cons; first done. auto.
      * intros [->|Hb']%elem_of_cons; first by (symmetry; auto).
        trans a; last by auto. symmetry. auto.
    + intros Hl b' Hb'. apply Hl; set_solver.
Qed.

Section list_theory.
  Context `(R: relation A) `{Equivalence A R}.
Ralf Jung's avatar
Ralf Jung committed
49
  Collection Hyps := Type H.
50
  Local Set Default Proof Using "Hyps".
Ralf Jung's avatar
Ralf Jung committed
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

  Global Instance: PreOrder (list_setincl R).
  Proof.
    split.
    - intros al a Ha. set_solver.
    - intros al bl cl Hab Hbc a Ha. destruct (Hab _ Ha) as (b & Hb & Rab).
      destruct (Hbc _ Hb) as (c & Hc & Rbc). exists c. split; first done.
      by trans b.
  Qed.

  Global Instance: Equivalence (list_setequiv R).
  Proof.
    split.
    - by split.
    - intros ?? [??]. split; auto.
    - intros ??? [??] [??]. split; etrans; done.
  Qed.

  Global Instance list_setincl_subrel `(R' : relation A) :
    subrelation R R'  subrelation (list_setincl R) (list_setincl R').
Ralf Jung's avatar
Ralf Jung committed
71
  Proof using.
Ralf Jung's avatar
Ralf Jung committed
72 73 74 75 76 77
    intros HRR' al bl Hab. intros a Ha. destruct (Hab _ Ha) as (b & Hb & HR).
    exists b. split; first done. exact: HRR'.
  Qed.

  Global Instance list_setequiv_subrel `(R' : relation A) :
    subrelation R R'  subrelation (list_setequiv R) (list_setequiv R').
Ralf Jung's avatar
Ralf Jung committed
78
  Proof using. intros HRR' ?? [??]. split; exact: list_setincl_subrel. Qed.
Ralf Jung's avatar
Ralf Jung committed
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

  Global Instance list_setincl_perm : subrelation () (list_setincl R).
  Proof.
    intros al bl Hab a Ha. exists a. split; last done.
    by rewrite -Hab.
  Qed.

  Global Instance list_setincl_app l :
    Proper (list_setincl R ==> list_setincl R) (app l).
  Proof.
    intros al bl Hab a [Ha|Ha]%elem_of_app.
    - exists a. split; last done. apply elem_of_app. by left.
    - destruct (Hab _ Ha) as (b & Hb & HR). exists b. split; last done.
      apply elem_of_app. by right.
  Qed.

  Global Instance list_setequiv_app l :
    Proper (list_setequiv R ==> list_setequiv R) (app l).
  Proof. intros al bl [??]. split; apply list_setincl_app; done. Qed.

  Global Instance: subrelation () (flip (list_setincl R)).
  Proof. intros ???. apply list_setincl_perm. done. Qed.

  Global Instance list_agrees_setincl :
    Proper (flip (list_setincl R) ==> impl) (list_agrees R).
  Proof.
    move=> al bl /= Hab /list_agrees_alt Hal. apply (list_agrees_alt _) => a b Ha Hb.
    destruct (Hab _ Ha) as (a' & Ha' & HRa).
    destruct (Hab _ Hb) as (b' & Hb' & HRb).
    trans a'; first done. etrans; last done.
    eapply Hal; done.
  Qed.

  Global Instance list_agrees_setequiv :
    Proper (list_setequiv R ==> iff) (list_agrees R).
  Proof.
    intros ?? [??]. split; by apply: list_agrees_setincl.
  Qed.

  Lemma list_setincl_contains al bl :
    ( x, x  al  x  bl)  list_setincl R al bl.
  Proof. intros Hin a Ha. exists a. split; last done. naive_solver. Qed.

  Lemma list_setequiv_equiv al bl :
    ( x, x  al  x  bl)  list_setequiv R al bl.
  Proof.
    intros Hin. split; apply list_setincl_contains; naive_solver.
  Qed.

  Lemma list_agrees_contains al bl :
    ( x, x  bl  x  al) 
    list_agrees R al  list_agrees R bl.
  Proof. intros ?. by eapply (list_agrees_setincl _),list_setincl_contains. Qed.

  Lemma list_agrees_equiv al bl :
    ( x, x  bl  x  al) 
    list_agrees R al  list_agrees R bl.
  Proof. intros ?. by eapply (list_agrees_setequiv _), list_setequiv_equiv. Qed.

  Lemma list_setincl_singleton a b :
    R a b  list_setincl R [a] [b].
  Proof.
    intros HR c ->%elem_of_list_singleton. exists b. split; last done.
    apply elem_of_list_singleton. done.
  Qed.

  Lemma list_setincl_singleton_rev a b :
    list_setincl R [a] [b]  R a b.
Ralf Jung's avatar
Ralf Jung committed
147
  Proof using.
Ralf Jung's avatar
Ralf Jung committed
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    intros Hl. destruct (Hl a) as (? & ->%elem_of_list_singleton & HR); last done.
    by apply elem_of_list_singleton.
  Qed.

  Lemma list_setequiv_singleton a b :
    R a b  list_setequiv R [a] [b].
  Proof. intros ?. split; by apply list_setincl_singleton. Qed.

  Lemma list_agrees_iff_setincl al a :
    a  al  list_agrees R al  list_setincl R al [a].
  Proof.
    intros Hin. split.
    - move=>/list_agrees_alt Hl b Hb. exists a. split; first set_solver+. exact: Hl.
    - intros Hl. apply (list_agrees_alt _)=> b c Hb Hc.
      destruct (Hl _ Hb) as (? & ->%elem_of_list_singleton & ?).
      destruct (Hl _ Hc) as (? & ->%elem_of_list_singleton & ?).
      by trans a.
  Qed.

  Lemma list_setincl_singleton_in al a :
    a  al  list_setincl R [a] al.
  Proof.
    intros Hin b ->%elem_of_list_singleton. exists a. split; done.
  Qed.

  Global Instance list_setincl_ext : subrelation (Forall2 R) (list_setincl R).
  Proof.
    move=>al bl. induction 1.
    - intros ? []%elem_of_nil.
    - intros a [->|Ha]%elem_of_cons.
      + eexists. split; first constructor. done.
      + destruct (IHForall2 _ Ha) as (b & ? & ?).
        exists b. split; first by constructor. done.
  Qed.

  Global Instance list_setequiv_ext : subrelation (Forall2 R) (list_setequiv R).
  Proof.
    move=>al bl ?. split; apply list_setincl_ext; done.
  Qed.

  Lemma list_agrees_subrel `(R' : relation A) `{Equivalence _ R'} :
    subrelation R R'   l, list_agrees R l  list_agrees R' l.
  Proof. move=> HR l /list_agrees_alt Hl. apply (list_agrees_alt _)=> a b Ha Hb. by apply HR, Hl. Qed.

  Section fmap.
    Context `(R' : relation B) (f : A  B) {Hf: Proper (R ==> R') f}.
Ralf Jung's avatar
Ralf Jung committed
194
    Collection Hyps := Type Hf.
195
    Local Set Default Proof Using "Hyps".
Ralf Jung's avatar
Ralf Jung committed
196 197 198
    
    Global Instance list_setincl_fmap :
      Proper (list_setincl R ==> list_setincl R') (fmap f).
Ralf Jung's avatar
Ralf Jung committed
199
    Proof using Hf.
Ralf Jung's avatar
Ralf Jung committed
200 201 202 203 204 205 206
      intros al bl Hab a' (a & -> & Ha)%elem_of_list_fmap.
      destruct (Hab _ Ha) as (b & Hb & HR). exists (f b).
      split; first eapply elem_of_list_fmap; eauto.
    Qed.
    
    Global Instance list_setequiv_fmap :
      Proper (list_setequiv R ==> list_setequiv R') (fmap f).
Ralf Jung's avatar
Ralf Jung committed
207
    Proof using Hf. intros ?? [??]. split; apply list_setincl_fmap; done. Qed.
Ralf Jung's avatar
Ralf Jung committed
208 209 210

    Lemma list_agrees_fmap `{Equivalence _ R'} al :
      list_agrees R al  list_agrees R' (f <$> al).
211
    Proof using Type*.
Ralf Jung's avatar
Ralf Jung committed
212
      move=> /list_agrees_alt Hl. apply (list_agrees_alt R') => a' b'.
Ralf Jung's avatar
Ralf Jung committed
213 214 215 216 217 218 219
      intros (a & -> & Ha)%elem_of_list_fmap (b & -> & Hb)%elem_of_list_fmap.
      apply Hf. exact: Hl.
    Qed.
      
  End fmap.

End list_theory.
Robbert Krebbers's avatar
Robbert Krebbers committed
220 221

Section agree.
222
Local Set Default Proof Using "Type".
223
Context {A : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
224

Ralf Jung's avatar
Ralf Jung committed
225
Definition agree_list (x : agree A) := agree_car x :: agree_with x.
226

Ralf Jung's avatar
Ralf Jung committed
227 228 229 230
Instance agree_validN : ValidN (agree A) := λ n x,
  list_agrees (dist n) (agree_list x).
Instance agree_valid : Valid (agree A) := λ x,
  list_agrees (equiv) (agree_list x).
231

232
Instance agree_dist : Dist (agree A) := λ n x y,
Ralf Jung's avatar
Ralf Jung committed
233 234 235 236 237 238 239
  list_setequiv (dist n) (agree_list x) (agree_list y).
Instance agree_equiv : Equiv (agree A) := λ x y,
   n, list_setequiv (dist n) (agree_list x) (agree_list y).

Definition agree_dist_incl n (x y : agree A) :=
  list_setincl (dist n) (agree_list x) (agree_list y).

240
Definition agree_ofe_mixin : OfeMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
241 242
Proof.
  split.
Ralf Jung's avatar
Ralf Jung committed
243 244 245 246 247 248
  - intros x y; split; intros Hxy; done.
  - split; rewrite /dist /agree_dist; intros ? *.
    + reflexivity.
    + by symmetry.
    + intros. etrans; eassumption.
  - intros ???. apply list_setequiv_subrel=>??. apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
249
Qed.
250 251
Canonical Structure agreeC := OfeT (agree A) agree_ofe_mixin.

252
Program Instance agree_op : Op (agree A) := λ x y,
253
  {| agree_car := agree_car x;
Ralf Jung's avatar
Ralf Jung committed
254
     agree_with := agree_with x ++ agree_car y :: agree_with y |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
255
Instance agree_pcore : PCore (agree A) := Some.
256

257
Instance: Comm () (@op (agree A) _).
Ralf Jung's avatar
Ralf Jung committed
258 259
Proof. intros x y n. apply: list_setequiv_equiv. set_solver. Qed.

Ralf Jung's avatar
...  
Ralf Jung committed
260
Lemma agree_idemp (x : agree A) : x  x  x.
Ralf Jung's avatar
Ralf Jung committed
261 262
Proof. intros n. apply: list_setequiv_equiv. set_solver. Qed.

263 264
Instance:  n : nat, Proper (dist n ==> impl) (@validN (agree A) _ n).
Proof.
Ralf Jung's avatar
Ralf Jung committed
265 266
  intros n x y. rewrite /dist /validN /agree_dist /agree_validN.
  by intros ->.
267
Qed.
Ralf Jung's avatar
Ralf Jung committed
268 269 270 271 272 273
Instance:  n : nat, Proper (equiv ==> iff) (@validN (agree A) _ n).
Proof.
  intros n ???. assert (x {n} y) as Hxy by by apply equiv_dist.
  split; rewrite Hxy; done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
274 275
Instance:  x : agree A, Proper (dist n ==> dist n) (op x).
Proof.
Ralf Jung's avatar
Ralf Jung committed
276 277
  intros n x y1 y2. rewrite /dist /agree_dist /agree_list /=. 
  rewrite !app_comm_cons. apply: list_setequiv_app.
Robbert Krebbers's avatar
Robbert Krebbers committed
278
Qed.
279
Instance: Proper (dist n ==> dist n ==> dist n) (@op (agree A) _).
280
Proof. by intros n x1 x2 Hx y1 y2 Hy; rewrite Hy !(comm _ _ y2) Hx. Qed.
281
Instance: Proper (() ==> () ==> ()) op := ne_proper_2 _.
282
Instance: Assoc () (@op (agree A) _).
Ralf Jung's avatar
Ralf Jung committed
283
Proof. intros x y z n. apply: list_setequiv_equiv. set_solver. Qed.
284

Robbert Krebbers's avatar
Robbert Krebbers committed
285 286 287 288 289
Lemma agree_included (x y : agree A) : x  y  y  x  y.
Proof.
  split; [|by intros ?; exists y].
  by intros [z Hz]; rewrite Hz assoc agree_idemp.
Qed.
Ralf Jung's avatar
Ralf Jung committed
290 291 292 293 294 295 296 297 298 299 300 301
Lemma agree_op_inv_inclN n x1 x2 : {n} (x1  x2)  agree_dist_incl n x1 x2.
Proof.
  rewrite /validN /= => /list_agrees_alt Hv a /elem_of_cons Ha. exists (agree_car x2).
  split; first by constructor. eapply Hv.
  - simpl. destruct Ha as [->|Ha]; set_solver.
  - simpl. set_solver+.
Qed.
Lemma agree_op_invN n (x1 x2 : agree A) : {n} (x1  x2)  x1 {n} x2.
Proof.
  intros Hxy. split; apply agree_op_inv_inclN; first done. by rewrite comm.
Qed.

302 303 304
Lemma agree_valid_includedN n (x y : agree A) : {n} y  x {n} y  x {n} y.
Proof.
  move=> Hval [z Hy]; move: Hval; rewrite Hy.
Ralf Jung's avatar
Ralf Jung committed
305
  by move=> /agree_op_invN->; rewrite agree_idemp.
306 307
Qed.

308
Definition agree_cmra_mixin : CMRAMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
309
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
310
  apply cmra_total_mixin; try apply _ || by eauto.
Ralf Jung's avatar
Ralf Jung committed
311 312 313 314 315 316
  - move=>x. split.
    + move=>/list_agrees_alt Hx n. apply (list_agrees_alt _)=> a b Ha Hb.
      apply equiv_dist, Hx; done.
    + intros Hx. apply (list_agrees_alt _)=> a b Ha Hb.
      apply equiv_dist=>n. eapply (list_agrees_alt _); first (by apply Hx); done.
  - intros n x. apply (list_agrees_subrel _ _)=>??. apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
317
  - intros x. apply agree_idemp.
Ralf Jung's avatar
Ralf Jung committed
318
  - intros ??? Hl. apply: list_agrees_contains Hl. set_solver.
319
  - intros n x y1 y2 Hval Hx; exists x, x; simpl; split.
320
    + by rewrite agree_idemp.
Ralf Jung's avatar
Ralf Jung committed
321
    + by move: Hval; rewrite Hx; move=> /agree_op_invN->; rewrite agree_idemp.
Robbert Krebbers's avatar
Robbert Krebbers committed
322
Qed.
323
Canonical Structure agreeR : cmraT :=
324
  CMRAT (agree A) agree_ofe_mixin agree_cmra_mixin.
325

Robbert Krebbers's avatar
Robbert Krebbers committed
326 327
Global Instance agree_total : CMRATotal agreeR.
Proof. rewrite /CMRATotal; eauto. Qed.
328
Global Instance agree_persistent (x : agree A) : Persistent x.
Robbert Krebbers's avatar
Robbert Krebbers committed
329
Proof. by constructor. Qed.
330

Ralf Jung's avatar
Ralf Jung committed
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
Lemma agree_op_inv (x1 x2 : agree A) :  (x1  x2)  x1  x2.
Proof.
  intros ?. apply equiv_dist=>n. by apply agree_op_invN, cmra_valid_validN.
Qed.

Global Instance agree_discrete :
  Discrete A  CMRADiscrete agreeR.
Proof.
  intros HD. split.
  - intros x y Hxy n. eapply list_setequiv_subrel; last exact Hxy. clear -HD.
    intros x y ?. apply equiv_dist, HD. done.
  - rewrite /valid /cmra_valid /agree_valid /validN /cmra_validN /agree_validN /=.
    move=> x. apply (list_agrees_subrel _ _). clear -HD.
    intros x y. apply HD.
Qed.

Definition to_agree (x : A) : agree A :=
  {| agree_car := x; agree_with := [] |}.
349

Robbert Krebbers's avatar
Robbert Krebbers committed
350
Global Instance to_agree_ne n : Proper (dist n ==> dist n) to_agree.
Ralf Jung's avatar
Ralf Jung committed
351 352 353 354
Proof.
  intros x1 x2 Hx; rewrite /= /dist /agree_dist /=.
  exact: list_setequiv_singleton.
Qed.
355
Global Instance to_agree_proper : Proper (() ==> ()) to_agree := ne_proper _.
356

Ralf Jung's avatar
Ralf Jung committed
357 358 359 360 361 362
Global Instance to_agree_injN n : Inj (dist n) (dist n) (to_agree).
Proof. intros a b [Hxy%list_setincl_singleton_rev _]. done. Qed. 
Global Instance to_agree_inj : Inj () () (to_agree).
Proof.
  intros a b ?. apply equiv_dist=>n. apply to_agree_injN. by apply equiv_dist.
Qed.
363

364
Lemma to_agree_uninjN n (x : agree A) : {n} x   y : A, to_agree y {n} x.
365
Proof.
Ralf Jung's avatar
Ralf Jung committed
366 367 368 369 370 371
  intros Hl. exists (agree_car x). rewrite /dist /agree_dist /=.
  split.
  - apply: list_setincl_singleton_in. set_solver+.
  - apply (list_agrees_iff_setincl _); first set_solver+. done.
Qed.

372 373 374 375 376 377 378 379 380 381
Lemma to_agree_uninj (x : agree A) :  x   y : A, to_agree y  x.
Proof.
  intros Hl. exists (agree_car x). rewrite /dist /agree_dist /=.
  split.
  - apply: list_setincl_singleton_in. set_solver+.
  - apply (list_agrees_iff_setincl _); first set_solver+.
    eapply list_agrees_subrel; last exact: Hl; [apply _..|].
    intros ???. by apply equiv_dist.
Qed.

Ralf Jung's avatar
Ralf Jung committed
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
Lemma to_agree_included (a b : A) : to_agree a  to_agree b  a  b.
Proof.
  split.
  - intros (x & Heq). apply equiv_dist=>n. destruct (Heq n) as [_ Hincl].
    (* TODO: This could become a generic lemma about list_setincl. *)
    destruct (Hincl a) as (? & ->%elem_of_list_singleton & ?); first set_solver+.
    done.
  - intros Hab. rewrite Hab. eexists. symmetry. eapply agree_idemp.
Qed.

Lemma to_agree_comp_valid (a b : A) :  (to_agree a  to_agree b)  a  b.
Proof.
  split.
  - (* TODO: can this be derived from other stuff?  Otherwise, should probably become sth. generic about list_agrees. *)
    intros Hv. apply Hv; simpl; set_solver.
  - intros ->. rewrite agree_idemp. done.
398
Qed.
399 400

(** Internalized properties *)
401
Lemma agree_equivI {M} a b : to_agree a  to_agree b  (a  b : uPred M).
402
Proof.
Ralf Jung's avatar
Ralf Jung committed
403 404 405
  uPred.unseal. do 2 split.
  - intros Hx. exact: to_agree_injN.
  - intros Hx. exact: to_agree_ne.
406
Qed.
407
Lemma agree_validI {M} x y :  (x  y)  (x  y : uPred M).
Ralf Jung's avatar
Ralf Jung committed
408
Proof. uPred.unseal; split=> r n _ ?; by apply: agree_op_invN. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
409 410
End agree.

411
Arguments agreeC : clear implicits.
412
Arguments agreeR : clear implicits.
413

414
Program Definition agree_map {A B} (f : A  B) (x : agree A) : agree B :=
Ralf Jung's avatar
Ralf Jung committed
415
  {| agree_car := f (agree_car x); agree_with := f <$> (agree_with x) |}.
416
Lemma agree_map_id {A} (x : agree A) : agree_map id x = x.
Ralf Jung's avatar
Ralf Jung committed
417
Proof. rewrite /agree_map /= list_fmap_id. by destruct x. Qed.
418 419
Lemma agree_map_compose {A B C} (f : A  B) (g : B  C) (x : agree A) :
  agree_map (g  f) x = agree_map g (agree_map f x).
Ralf Jung's avatar
Ralf Jung committed
420
Proof. rewrite /agree_map /= list_fmap_compose. done. Qed.
421

Robbert Krebbers's avatar
Robbert Krebbers committed
422
Section agree_map.
423
  Context {A B : ofeT} (f : A  B) `{Hf:  n, Proper (dist n ==> dist n) f}.
Ralf Jung's avatar
Ralf Jung committed
424
  Collection Hyps := Type Hf.
Robbert Krebbers's avatar
Robbert Krebbers committed
425
  Instance agree_map_ne n : Proper (dist n ==> dist n) (agree_map f).
Ralf Jung's avatar
Ralf Jung committed
426
  Proof using Hyps.
Ralf Jung's avatar
Ralf Jung committed
427 428 429 430
    intros x y Hxy.
    change (list_setequiv (dist n)(f <$> (agree_list x))(f <$> (agree_list y))).
    eapply list_setequiv_fmap; last exact Hxy. apply _. 
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
431
  Instance agree_map_proper : Proper (() ==> ()) (agree_map f) := ne_proper _.
Ralf Jung's avatar
Ralf Jung committed
432

433 434
  Lemma agree_map_ext (g : A  B) x :
    ( x, f x  g x)  agree_map f x  agree_map g x.
Ralf Jung's avatar
Ralf Jung committed
435 436 437 438 439 440
  Proof.
    intros Hfg n. apply: list_setequiv_ext.
    change (f <$> (agree_list x) {n} g <$> (agree_list x)).
    apply list_fmap_ext_ne=>y. by apply equiv_dist.
  Qed.

441
  Global Instance agree_map_monotone : CMRAMonotone (agree_map f).
Ralf Jung's avatar
Ralf Jung committed
442
  Proof using Hyps.
Robbert Krebbers's avatar
Robbert Krebbers committed
443
    split; first apply _.
Ralf Jung's avatar
Ralf Jung committed
444 445 446
    - intros n x. rewrite /cmra_validN /validN /= /agree_validN /= => ?.
      change (list_agrees (dist n) (f <$> agree_list x)).
      eapply (list_agrees_fmap _ _ _); done.
Robbert Krebbers's avatar
Robbert Krebbers committed
447
    - intros x y; rewrite !agree_included=> ->.
Ralf Jung's avatar
Ralf Jung committed
448 449
      rewrite /equiv /agree_equiv /agree_map /agree_op /agree_list /=.
      rewrite !fmap_app=>n. apply: list_setequiv_equiv. set_solver+.
Robbert Krebbers's avatar
Robbert Krebbers committed
450 451
  Qed.
End agree_map.
Robbert Krebbers's avatar
Robbert Krebbers committed
452

453 454 455
Definition agreeC_map {A B} (f : A -n> B) : agreeC A -n> agreeC B :=
  CofeMor (agree_map f : agreeC A  agreeC B).
Instance agreeC_map_ne A B n : Proper (dist n ==> dist n) (@agreeC_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
456
Proof.
Ralf Jung's avatar
Ralf Jung committed
457 458 459
  intros f g Hfg x. apply: list_setequiv_ext.
  change (f <$> (agree_list x) {n} g <$> (agree_list x)).
  apply list_fmap_ext_ne. done.
Robbert Krebbers's avatar
Robbert Krebbers committed
460
Qed.
Ralf Jung's avatar
Ralf Jung committed
461

462 463 464 465
Program Definition agreeRF (F : cFunctor) : rFunctor := {|
  rFunctor_car A B := agreeR (cFunctor_car F A B);
  rFunctor_map A1 A2 B1 B2 fg := agreeC_map (cFunctor_map F fg)
|}.
466 467 468
Next Obligation.
  intros ? A1 A2 B1 B2 n ???; simpl. by apply agreeC_map_ne, cFunctor_ne.
Qed.
469 470 471 472 473 474 475 476
Next Obligation.
  intros F A B x; simpl. rewrite -{2}(agree_map_id x).
  apply agree_map_ext=>y. by rewrite cFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x; simpl. rewrite -agree_map_compose.
  apply agree_map_ext=>y; apply cFunctor_compose.
Qed.
477 478 479 480 481 482 483

Instance agreeRF_contractive F :
  cFunctorContractive F  rFunctorContractive (agreeRF F).
Proof.
  intros ? A1 A2 B1 B2 n ???; simpl.
  by apply agreeC_map_ne, cFunctor_contractive.
Qed.