diff --git a/.gitmodules b/.gitmodules deleted file mode 100644 index 41342f5abe278f3cc8c1a36f0504984c5f9e3b94..0000000000000000000000000000000000000000 --- a/.gitmodules +++ /dev/null @@ -1,3 +0,0 @@ -[submodule "autosubst"] - path = autosubst - url = https://github.com/tebbi/autosubst.git diff --git a/_CoqProject b/_CoqProject index 799dd63084571ea5bd46def5c08053611bc1dce0..2495807aaf749e8dda63ab0a197f6ab833bed2e6 100644 --- a/_CoqProject +++ b/_CoqProject @@ -1,2 +1 @@ -Q . "" --R autosubst/theories Autosubst diff --git a/autosubst b/autosubst deleted file mode 160000 index 07c669460cd84e6e0b2084e870b19f947b699ded..0000000000000000000000000000000000000000 --- a/autosubst +++ /dev/null @@ -1 +0,0 @@ -Subproject commit 07c669460cd84e6e0b2084e870b19f947b699ded diff --git a/barrier/heap_lang.v b/barrier/heap_lang.v index f67a22da5c0d6db82acce3404ed8a884ec77696e..9dfcbf9cdb31369556aeb987da4654ca2275a1b2 100644 --- a/barrier/heap_lang.v +++ b/barrier/heap_lang.v @@ -1,7 +1,5 @@ Require Import Autosubst.Autosubst. -Require Import prelude.option prelude.gmap iris.language iris.parameter. - -Set Bullet Behavior "Strict Subproofs". +Require Import prelude.option prelude.gmap iris.parameter. (** Some tactics useful when dealing with equality of sigma-like types: existT T0 t0 = existT T1 t1. They all assume such an equality is the first thing on the "stack" (goal). *) diff --git a/iris/adequacy.v b/iris/adequacy.v new file mode 100644 index 0000000000000000000000000000000000000000..5d89cf9315a80575b88277593b4c86d7f070c529 --- /dev/null +++ b/iris/adequacy.v @@ -0,0 +1,110 @@ +Require Export iris.hoare. +Require Import iris.wsat. +Local Hint Extern 10 (_ ≤ _) => omega. +Local Hint Extern 100 (@eq coPset _ _) => eassumption || solve_elem_of. +Local Hint Extern 10 (✓{_} _) => + repeat match goal with H : wsat _ _ _ _ |- _ => apply wsat_valid in H end; + solve_validN. + +Section adequacy. +Context {Σ : iParam}. +Implicit Types e : iexpr Σ. +Implicit Types Q : ival Σ → iProp Σ. +Transparent uPred_holds. + +Notation wptp n := (Forall3 (λ e Q r, uPred_holds (wp coPset_all e Q) n r)). +Lemma wptp_le Qs es rs n n' : + ✓{n'} (big_op rs) → wptp n es Qs rs → n' ≤ n → wptp n' es Qs rs. +Proof. induction 2; constructor; eauto using uPred_weaken. Qed. +Lemma nsteps_wptp Qs k n tσ1 tσ2 rs1 : + nsteps step k tσ1 tσ2 → + 1 < n → wptp (k + n) (tσ1.1) Qs rs1 → + wsat (k + n) coPset_all (tσ1.2) (big_op rs1) → + ∃ rs2 Qs', wptp n (tσ2.1) (Qs ++ Qs') rs2 ∧ + wsat n coPset_all (tσ2.2) (big_op rs2). +Proof. + intros Hsteps Hn; revert Qs rs1. + induction Hsteps as [|k ?? tσ3 [e1 σ1 e2 σ2 ef t1 t2 ?? Hstep] Hsteps IH]; + simplify_equality'; intros Qs rs. + { by intros; exists rs, []; rewrite right_id_L. } + intros (Qs1&?&rs1&?&->&->&?& + (Q&Qs2&r&rs2&->&->&Hwp&?)%Forall3_cons_inv_l)%Forall3_app_inv_l ?. + destruct (wp_step_inv coPset_all ∅ Q e1 (k + n) (S (k + n)) σ1 r + (big_op (rs1 ++ rs2))) as [_ Hwpstep]; eauto using values_stuck. + { by rewrite right_id_L -big_op_cons Permutation_middle. } + destruct (Hwpstep e2 σ2 ef) as (r2&r2'&Hwsat&?&?); auto; clear Hwpstep. + revert Hwsat; rewrite big_op_app right_id_L=>Hwsat. + destruct ef as [e'|]. + * destruct (IH (Qs1 ++ Q :: Qs2 ++ [λ _, True%I]) + (rs1 ++ r2 :: rs2 ++ [r2'])) as (rs'&Qs'&?&?). + { apply Forall3_app, Forall3_cons, + Forall3_app, Forall3_cons, Forall3_nil; eauto using wptp_le. } + { by rewrite -Permutation_middle /= (associative (++)) + (commutative (++)) /= associative big_op_app. } + exists rs', ([λ _, True%I] ++ Qs'); split; auto. + by rewrite (associative _ _ _ Qs') -(associative _ Qs1). + * apply (IH (Qs1 ++ Q :: Qs2) (rs1 ++ r2 â‹… r2' :: rs2)). + { rewrite /option_list right_id_L. + apply Forall3_app, Forall3_cons; eauto using wptp_le. + apply uPred_weaken with r2 (k + n); eauto using @ra_included_l. } + by rewrite -Permutation_middle /= big_op_app. +Qed. +Lemma ht_adequacy_steps P Q k n e1 t2 σ1 σ2 r1 : + {{ P }} e1 @ coPset_all {{ Q }} → + nsteps step k ([e1],σ1) (t2,σ2) → + 1 < n → wsat (k + n) coPset_all σ1 r1 → + P (k + n) r1 → + ∃ rs2 Qs', wptp n t2 ((λ v, pvs coPset_all coPset_all (Q v)) :: Qs') rs2 ∧ + wsat n coPset_all σ2 (big_op rs2). +Proof. + intros Hht ????; apply (nsteps_wptp [pvs coPset_all coPset_all ∘ Q] k n + ([e1],σ1) (t2,σ2) [r1]); rewrite /big_op ?right_id; auto. + constructor; last constructor. + apply Hht with r1 (k + n); eauto using @ra_included_unit. + by destruct (k + n). +Qed. +Theorem ht_adequacy_result E φ e v t2 σ1 σ2 : + {{ ownP σ1 }} e @ E {{ λ v', ■φ v' }} → + rtc step ([e], σ1) (of_val v :: t2, σ2) → + φ v. +Proof. + intros ? [k ?]%rtc_nsteps. + destruct (ht_adequacy_steps (ownP σ1) (λ v', ■φ v')%I k 2 e + (of_val v :: t2) σ1 σ2 (Res ∅ (Excl σ1) ∅)) as (rs2&Qs&Hwptp&?); auto. + { by rewrite -(ht_mask_weaken E coPset_all). } + { rewrite Nat.add_comm; apply wsat_init. } + { by rewrite /uPred_holds /=. } + inversion Hwptp as [|?? r ?? rs Hwp _]; clear Hwptp; subst. + apply wp_value_inv in Hwp; destruct (Hwp (big_op rs) 2 ∅ σ2) as [r' []]; auto. + by rewrite right_id_L. +Qed. +Lemma ht_adequacy_reducible E Q e1 e2 t2 σ1 σ2 : + {{ ownP σ1 }} e1 @ E {{ Q }} → + rtc step ([e1], σ1) (t2, σ2) → + e2 ∈ t2 → to_val e2 = None → reducible e2 σ2. +Proof. + intros ? [k ?]%rtc_nsteps [i ?]%elem_of_list_lookup He. + destruct (ht_adequacy_steps (ownP σ1) Q k 3 e1 + t2 σ1 σ2 (Res ∅ (Excl σ1) ∅)) as (rs2&Qs&?&?); auto. + { by rewrite -(ht_mask_weaken E coPset_all). } + { rewrite Nat.add_comm; apply wsat_init. } + { by rewrite /uPred_holds /=. } + destruct (Forall3_lookup_l (λ e Q r, wp coPset_all e Q 3 r) t2 + (pvs coPset_all coPset_all ∘ Q :: Qs) rs2 i e2) as (Q'&r2&?&?&Hwp); auto. + destruct (wp_step_inv coPset_all ∅ Q' e2 2 3 σ2 r2 (big_op (delete i rs2))); + rewrite ?right_id_L ?big_op_delete; auto. +Qed. +Theorem ht_adequacy_safe E Q e1 t2 σ1 σ2 : + {{ ownP σ1 }} e1 @ E {{ Q }} → + rtc step ([e1], σ1) (t2, σ2) → + Forall (λ e, is_Some (to_val e)) t2 ∨ ∃ t3 σ3, step (t2, σ2) (t3, σ3). +Proof. + intros. + destruct (decide (Forall (λ e, is_Some (to_val e)) t2)) as [|Ht2]; [by left|]. + apply (not_Forall_Exists _), Exists_exists in Ht2; destruct Ht2 as (e2&?&He2). + destruct (ht_adequacy_reducible E Q e1 e2 t2 σ1 σ2) as (e3&σ3&ef&?); + rewrite ?eq_None_not_Some; auto. + destruct (elem_of_list_split t2 e2) as (t2'&t2''&->); auto. + right; exists (t2' ++ e3 :: t2'' ++ option_list ef), σ3; econstructor; eauto. +Qed. +End adequacy. diff --git a/iris/hoare_lifting.v b/iris/hoare_lifting.v index dac04e964595b4081270c80e33c22dece7745958..53886aab2687164483c8d3d52300af421d651885 100644 --- a/iris/hoare_lifting.v +++ b/iris/hoare_lifting.v @@ -15,7 +15,7 @@ Import uPred. Lemma ht_lift_step E1 E2 (φ : iexpr Σ → istate Σ → option (iexpr Σ) → Prop) P P' Q1 Q2 R e1 σ1 : E1 ⊆ E2 → to_val e1 = None → - (∃ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef) → + reducible e1 σ1 → (∀ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → φ e2 σ2 ef) → (P >{E2,E1}> (ownP σ1 ★ â–· P') ∧ ∀ e2 σ2 ef, (■φ e2 σ2 ef ★ ownP σ2 ★ P') >{E1,E2}> (Q1 e2 σ2 ef ★ Q2 e2 σ2 ef) ∧ @@ -45,7 +45,7 @@ Qed. Lemma ht_lift_atomic E (φ : iexpr Σ → istate Σ → option (iexpr Σ) → Prop) P e1 σ1 : atomic e1 → - (∃ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef) → + reducible e1 σ1 → (∀ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → φ e2 σ2 ef) → (∀ e2 σ2 ef, {{ ■φ e2 σ2 ef ★ P }} ef ?@ coPset_all {{ λ _, True }}) ⊑ {{ ownP σ1 ★ â–· P }} e1 @ E {{ λ v, ∃ σ2 ef, ownP σ2 ★ ■φ (of_val v) σ2 ef }}. @@ -71,7 +71,7 @@ Proof. Qed. Lemma ht_lift_pure_step E (φ : iexpr Σ → option (iexpr Σ) → Prop) P P' Q e1 : to_val e1 = None → - (∀ σ1, ∃ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef) → + (∀ σ1, reducible e1 σ1) → (∀ σ1 e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → σ1 = σ2 ∧ φ e2 ef) → (∀ e2 ef, {{ ■φ e2 ef ★ P }} e2 @ E {{ Q }} ∧ @@ -97,7 +97,7 @@ Qed. Lemma ht_lift_pure_determistic_step E (φ : iexpr Σ → option (iexpr Σ) → Prop) P P' Q e1 e2 ef : to_val e1 = None → - (∀ σ1, prim_step e1 σ1 e2 σ1 ef) → + (∀ σ1, reducible e1 σ1) → (∀ σ1 e2' σ2 ef', prim_step e1 σ1 e2' σ2 ef' → σ1 = σ2 ∧ e2 = e2' ∧ ef = ef')→ ({{ P }} e2 @ E {{ Q }} ∧ {{ P' }} ef ?@ coPset_all {{ λ _, True }}) ⊑ {{ â–·(P ★ P') }} e1 @ E {{ Q }}. diff --git a/iris/language.v b/iris/language.v index 525ffd4a9190ff638692b892730b129c73c2ac3b..09c9aee60741e217cb7bb73cf17f86bf8dca1bce 100644 --- a/iris/language.v +++ b/iris/language.v @@ -19,6 +19,11 @@ Arguments Build_Language {_ _ _} _ _ _ _ {_ _ _ _ _}. Section language. Context `{Language E V St}. + Definition reducible (e : E) (σ : St) := + ∃ e' σ' ef, prim_step e σ e' σ' ef. + Lemma reducible_not_val e σ : reducible e σ → to_val e = None. + Proof. intros (?&?&?&?); eauto using values_stuck. Qed. + Lemma atomic_of_val v : ¬atomic (of_val v). Proof. by intros Hat; apply atomic_not_value in Hat; rewrite to_of_val in Hat. @@ -30,13 +35,10 @@ Section language. Inductive step (Ï1 Ï2 : cfg) : Prop := | step_atomic e1 σ1 e2 σ2 ef t1 t2 : Ï1 = (t1 ++ e1 :: t2, σ1) → - Ï1 = (t1 ++ e2 :: t2 ++ option_list ef, σ2) → + Ï2 = (t1 ++ e2 :: t2 ++ option_list ef, σ2) → prim_step e1 σ1 e2 σ2 ef → step Ï1 Ï2. - Definition steps := rtc step. - Definition stepn := nsteps step. - Record is_ctx (K : E → E) := IsCtx { is_ctx_value e : to_val e = None → to_val (K e) = None; is_ctx_step_preserved e1 σ1 e2 σ2 ef : diff --git a/iris/lifting.v b/iris/lifting.v index 8526f16e4ed5c1f40b3be94613969edee30fa107..c94eda289e988da9ac0c8ea2dd2298a147a9437d 100644 --- a/iris/lifting.v +++ b/iris/lifting.v @@ -16,7 +16,7 @@ Transparent uPred_holds. Lemma wp_lift_step E1 E2 (φ : iexpr Σ → istate Σ → option (iexpr Σ) → Prop) Q e1 σ1 : E1 ⊆ E2 → to_val e1 = None → - (∃ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef) → + reducible e1 σ1 → (∀ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → φ e2 σ2 ef) → pvs E2 E1 (ownP σ1 ★ â–· ∀ e2 σ2 ef, (■φ e2 σ2 ef ∧ ownP σ2) -★ pvs E1 E2 (wp E2 e2 Q ★ default True ef (flip (wp coPset_all) (λ _, True)))) @@ -37,7 +37,7 @@ Proof. Qed. Lemma wp_lift_pure_step E (φ : iexpr Σ → option (iexpr Σ) → Prop) Q e1 : to_val e1 = None → - (∀ σ1, ∃ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef) → + (∀ σ1, reducible e1 σ1) → (∀ σ1 e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → σ1 = σ2 ∧ φ e2 ef) → (â–· ∀ e2 ef, ■φ e2 ef → wp E e2 Q ★ default True ef (flip (wp coPset_all) (λ _, True))) diff --git a/iris/parameter.v b/iris/parameter.v index 66a71493cf75d0d9aa6729a4c114c2578821f04f..cfbf73ee39c65de9138adace5faa06ee88e87e32 100644 --- a/iris/parameter.v +++ b/iris/parameter.v @@ -1,7 +1,5 @@ Require Export modures.cmra iris.language. -Set Bullet Behavior "Strict Subproofs". - Record iParam := IParam { iexpr : Type; ival : Type; @@ -29,6 +27,8 @@ Proof. by intros ?; apply equiv_dist=> n; apply icmra_map_ne=> ?; apply equiv_dist. Qed. +Canonical Structure istateC Σ := leibnizC (istate Σ). + Definition IParamConst {iexpr ival istate : Type} (ilanguage : Language iexpr ival istate) (icmra : cmraT) {icmra_empty : Empty icmra} @@ -39,5 +39,3 @@ Unshelve. - by intros. - by intros. Defined. - -Canonical Structure istateC Σ := leibnizC (istate Σ). diff --git a/iris/weakestpre.v b/iris/weakestpre.v index 3e34864facf61be6f6578060083622cb1563ce06..3e9a5088b8266b24a59103ce360de16eb1a1d020 100644 --- a/iris/weakestpre.v +++ b/iris/weakestpre.v @@ -9,7 +9,7 @@ Local Hint Extern 10 (✓{_} _) => Record wp_go {Σ} (E : coPset) (Q Qfork : iexpr Σ → nat → res' Σ → Prop) (k : nat) (rf : res' Σ) (e1 : iexpr Σ) (σ1 : istate Σ) := { - wf_safe : ∃ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef; + wf_safe : reducible e1 σ1; wp_step e2 σ2 ef : prim_step e1 σ1 e2 σ2 ef → ∃ r2 r2', @@ -83,6 +83,17 @@ Proof. by intros Q Q' ?; apply equiv_dist=>n; apply wp_ne=>v; apply equiv_dist. Qed. +Lemma wp_value_inv E Q v n r : wp E (of_val v) Q n r → Q v n r. +Proof. + inversion 1 as [| |??? He]; simplify_equality; auto. + by rewrite ?to_of_val in He. +Qed. +Lemma wp_step_inv E Ef Q e k n σ r rf : + to_val e = None → 1 < k < n → E ∩ Ef = ∅ → + wp E e Q n r → wsat (S k) (E ∪ Ef) σ (r â‹… rf) → + wp_go (E ∪ Ef) (λ e, wp E e Q) (λ e, wp coPset_all e (λ _, True%I)) k rf e σ. +Proof. intros He; destruct 3; [lia|by rewrite ?to_of_val in He|eauto]. Qed. + Lemma wp_value E Q v : Q v ⊑ wp E (of_val v) Q. Proof. by constructor. Qed. Lemma wp_mono E e Q1 Q2 : (∀ v, Q1 v ⊑ Q2 v) → wp E e Q1 ⊑ wp E e Q2. @@ -91,9 +102,7 @@ Lemma wp_pvs E e Q : pvs E E (wp E e Q) ⊑ wp E e (λ v, pvs E E (Q v)). Proof. intros r [|n] ?; [done|]; intros Hvs. destruct (to_val e) as [v|] eqn:He; [apply of_to_val in He; subst|]. - { constructor; eapply pvs_mono, Hvs; auto; clear. - intros r n ?; inversion 1 as [| |??? He]; simplify_equality; auto. - by rewrite ?to_of_val in He. } + { by constructor; eapply pvs_mono, Hvs; [intros ???; apply wp_value_inv|]. } constructor; [done|intros rf k Ef σ1 ???]. destruct (Hvs rf (S k) Ef σ1) as (r'&Hwp&?); auto. inversion Hwp as [| |???? Hgo]; subst; [by rewrite to_of_val in He|]. diff --git a/iris/wsat.v b/iris/wsat.v index 598d20786458ec615300ddf9c58e97c378f54548..ac5f7e5019d34b59c08b3779ef48d9d1489b3f82 100644 --- a/iris/wsat.v +++ b/iris/wsat.v @@ -63,6 +63,14 @@ Proof. destruct n; [intros; apply cmra_valid_0|intros [rs ?]]. eapply cmra_valid_op_l, wsat_pre_valid; eauto. Qed. +Lemma wsat_init k E σ : wsat (S k) E σ (Res ∅ (Excl σ) ∅). +Proof. + exists ∅; constructor; auto. + * rewrite big_opM_empty right_id. + split_ands'; try (apply cmra_valid_validN, ra_empty_valid); constructor. + * by intros i; rewrite lookup_empty=>-[??]. + * intros i P ?; rewrite /= (left_id _ _) lookup_empty; inversion_clear 1. +Qed. Lemma wsat_open n E σ r i P : wld r !! i ={S n}= Some (to_agree (Later (iProp_unfold P))) → i ∉ E → wsat (S n) ({[i]} ∪ E) σ r → ∃ rP, wsat (S n) E σ (rP â‹… r) ∧ P n rP. diff --git a/modures/ra.v b/modures/ra.v index bfc324de4ece896dcd375cc1e8c7b4193c9a0b88..4401556a103147cac4987d9922a35fda7972e785 100644 --- a/modures/ra.v +++ b/modures/ra.v @@ -125,6 +125,10 @@ Lemma ra_empty_least x : ∅ ≼ x. Proof. by exists x; rewrite (left_id _ _). Qed. (** * Big ops *) +Lemma big_op_nil : big_op (@nil A) = ∅. +Proof. done. Qed. +Lemma big_op_cons x xs : big_op (x :: xs) = x â‹… big_op xs. +Proof. done. Qed. Global Instance big_op_permutation : Proper ((≡ₚ) ==> (≡)) big_op. Proof. induction 1 as [|x xs1 xs2 ? IH|x y xs|xs1 xs2 xs3]; simpl; auto. @@ -147,6 +151,9 @@ Proof. * by transitivity (big_op ys); [|apply ra_included_r]. * by transitivity (big_op ys). Qed. +Lemma big_op_delete xs i x : + xs !! i = Some x → x â‹… big_op (delete i xs) ≡ big_op xs. +Proof. by intros; rewrite {2}(delete_Permutation xs i x). Qed. Context `{FinMap K M}. Lemma big_opM_empty : big_opM (∅ : M A) ≡ ∅. diff --git a/prelude/list.v b/prelude/list.v index 6e0bac82ae30832c2582a686ab64310422c5be2d..ef167dc392dd8dbcd7307416bb4e333f26e57bc4 100644 --- a/prelude/list.v +++ b/prelude/list.v @@ -1372,6 +1372,11 @@ Proof. induction l as [|x l IH]; [done|]. by rewrite reverse_cons, (commutative (++)), IH. Qed. +Lemma delete_Permutation l i x : l !! i = Some x → l ≡ₚ x :: delete i l. +Proof. + revert i; induction l as [|y l IH]; intros [|i] ?; simplify_equality'; auto. + by rewrite Permutation_swap, <-(IH i). +Qed. (** ** Properties of the [prefix_of] and [suffix_of] predicates *) Global Instance: PreOrder (@prefix_of A). @@ -2522,59 +2527,85 @@ End Forall2_order. Section Forall3. Context {A B C} (P : A → B → C → Prop). Hint Extern 0 (Forall3 _ _ _ _) => constructor. - Lemma Forall3_app l1 k1 k1' l2 k2 k2' : + Lemma Forall3_app l1 l2 k1 k2 k1' k2' : Forall3 P l1 k1 k1' → Forall3 P l2 k2 k2' → Forall3 P (l1 ++ l2) (k1 ++ k2) (k1' ++ k2'). Proof. induction 1; simpl; auto. Qed. - Lemma Forall3_cons_inv_m l y l2' k : - Forall3 P l (y :: l2') k → ∃ x l2 z k2, - l = x :: l2 ∧ k = z :: k2 ∧ P x y z ∧ Forall3 P l2 l2' k2. + Lemma Forall3_cons_inv_l x l k k' : + Forall3 P (x :: l) k k' → ∃ y k2 z k2', + k = y :: k2 ∧ k' = z :: k2' ∧ P x y z ∧ Forall3 P l k2 k2'. + Proof. inversion_clear 1; naive_solver. Qed. + Lemma Forall3_app_inv_l l1 l2 k k' : + Forall3 P (l1 ++ l2) k k' → ∃ k1 k2 k1' k2', + k = k1 ++ k2 ∧ k' = k1' ++ k2' ∧ Forall3 P l1 k1 k1' ∧ Forall3 P l2 k2 k2'. + Proof. + revert k k'. induction l1 as [|x l1 IH]; simpl; inversion_clear 1. + * by repeat eexists; eauto. + * by repeat eexists; eauto. + * edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver. + Qed. + Lemma Forall3_cons_inv_m l y k k' : + Forall3 P l (y :: k) k' → ∃ x l2 z k2', + l = x :: l2 ∧ k' = z :: k2' ∧ P x y z ∧ Forall3 P l2 k k2'. + Proof. inversion_clear 1; naive_solver. Qed. + Lemma Forall3_app_inv_m l k1 k2 k' : + Forall3 P l (k1 ++ k2) k' → ∃ l1 l2 k1' k2', + l = l1 ++ l2 ∧ k' = k1' ++ k2' ∧ Forall3 P l1 k1 k1' ∧ Forall3 P l2 k2 k2'. + Proof. + revert l k'. induction k1 as [|x k1 IH]; simpl; inversion_clear 1. + * by repeat eexists; eauto. + * by repeat eexists; eauto. + * edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver. + Qed. + Lemma Forall3_cons_inv_r l k z k' : + Forall3 P l k (z :: k') → ∃ x l2 y k2, + l = x :: l2 ∧ k = y :: k2 ∧ P x y z ∧ Forall3 P l2 k2 k'. Proof. inversion_clear 1; naive_solver. Qed. - Lemma Forall3_app_inv_m l l1' l2' k : - Forall3 P l (l1' ++ l2') k → ∃ l1 l2 k1 k2, - l = l1 ++ l2 ∧ k = k1 ++ k2 ∧ Forall3 P l1 l1' k1 ∧ Forall3 P l2 l2' k2. + Lemma Forall3_app_inv_r l k k1' k2' : + Forall3 P l k (k1' ++ k2') → ∃ l1 l2 k1 k2, + l = l1 ++ l2 ∧ k = k1 ++ k2 ∧ Forall3 P l1 k1 k1' ∧ Forall3 P l2 k2 k2'. Proof. - revert l k. induction l1' as [|x l1' IH]; simpl; inversion_clear 1. + revert l k. induction k1' as [|x k1' IH]; simpl; inversion_clear 1. * by repeat eexists; eauto. * by repeat eexists; eauto. * edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver. Qed. - Lemma Forall3_impl (Q : A → B → C → Prop) l l' k : - Forall3 P l l' k → (∀ x y z, P x y z → Q x y z) → Forall3 Q l l' k. - Proof. intros Hl ?. induction Hl; auto. Defined. - Lemma Forall3_length_lm l l' k : Forall3 P l l' k → length l = length l'. + Lemma Forall3_impl (Q : A → B → C → Prop) l k k' : + Forall3 P l k k' → (∀ x y z, P x y z → Q x y z) → Forall3 Q l k k'. + Proof. intros Hl ?; induction Hl; auto. Defined. + Lemma Forall3_length_lm l k k' : Forall3 P l k k' → length l = length k. Proof. by induction 1; f_equal'. Qed. - Lemma Forall3_length_lr l l' k : Forall3 P l l' k → length l = length k. + Lemma Forall3_length_lr l k k' : Forall3 P l k k' → length l = length k'. Proof. by induction 1; f_equal'. Qed. - Lemma Forall3_lookup_lmr l l' k i x y z : - Forall3 P l l' k → - l !! i = Some x → l' !! i = Some y → k !! i = Some z → P x y z. + Lemma Forall3_lookup_lmr l k k' i x y z : + Forall3 P l k k' → + l !! i = Some x → k !! i = Some y → k' !! i = Some z → P x y z. Proof. intros H. revert i. induction H; intros [|?] ???; simplify_equality'; eauto. Qed. - Lemma Forall3_lookup_l l l' k i x : - Forall3 P l l' k → l !! i = Some x → - ∃ y z, l' !! i = Some y ∧ k !! i = Some z ∧ P x y z. + Lemma Forall3_lookup_l l k k' i x : + Forall3 P l k k' → l !! i = Some x → + ∃ y z, k !! i = Some y ∧ k' !! i = Some z ∧ P x y z. Proof. intros H. revert i. induction H; intros [|?] ?; simplify_equality'; eauto. Qed. - Lemma Forall3_lookup_m l l' k i y : - Forall3 P l l' k → l' !! i = Some y → - ∃ x z, l !! i = Some x ∧ k !! i = Some z ∧ P x y z. + Lemma Forall3_lookup_m l k k' i y : + Forall3 P l k k' → k !! i = Some y → + ∃ x z, l !! i = Some x ∧ k' !! i = Some z ∧ P x y z. Proof. intros H. revert i. induction H; intros [|?] ?; simplify_equality'; eauto. Qed. - Lemma Forall3_lookup_r l l' k i z : - Forall3 P l l' k → k !! i = Some z → - ∃ x y, l !! i = Some x ∧ l' !! i = Some y ∧ P x y z. + Lemma Forall3_lookup_r l k k' i z : + Forall3 P l k k' → k' !! i = Some z → + ∃ x y, l !! i = Some x ∧ k !! i = Some y ∧ P x y z. Proof. intros H. revert i. induction H; intros [|?] ?; simplify_equality'; eauto. Qed. - Lemma Forall3_alter_lm f g l l' k i : - Forall3 P l l' k → - (∀ x y z, l !! i = Some x → l' !! i = Some y → k !! i = Some z → + Lemma Forall3_alter_lm f g l k k' i : + Forall3 P l k k' → + (∀ x y z, l !! i = Some x → k !! i = Some y → k' !! i = Some z → P x y z → P (f x) (g y) z) → - Forall3 P (alter f i l) (alter g i l') k. + Forall3 P (alter f i l) (alter g i k) k'. Proof. intros Hl. revert i. induction Hl; intros [|]; auto. Qed. End Forall3.